Limit theorems for sequences of random trees
We consider a random tree and introduce a metric in the space of trees to define the "mean tree" as the tree minimizing the average distance to the random tree. When the resulting metric space is compact we have laws of large numbers and central limit theorems for sequence of independent i...
Guardado en:
Publicado: |
2009
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_11330686_v18_n2_p302_Balding http://hdl.handle.net/20.500.12110/paper_11330686_v18_n2_p302_Balding |
Aporte de: |
id |
paper:paper_11330686_v18_n2_p302_Balding |
---|---|
record_format |
dspace |
spelling |
paper:paper_11330686_v18_n2_p302_Balding2023-06-08T16:09:09Z Limit theorems for sequences of random trees D-mean Invariance principle Kolmogorov-Smirnov Random trees We consider a random tree and introduce a metric in the space of trees to define the "mean tree" as the tree minimizing the average distance to the random tree. When the resulting metric space is compact we have laws of large numbers and central limit theorems for sequence of independent identically distributed random trees. As application we propose tests to check if two samples of random trees have the same law. © 2008 Sociedad de Estadística e Investigación Operativa. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_11330686_v18_n2_p302_Balding http://hdl.handle.net/20.500.12110/paper_11330686_v18_n2_p302_Balding |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
D-mean Invariance principle Kolmogorov-Smirnov Random trees |
spellingShingle |
D-mean Invariance principle Kolmogorov-Smirnov Random trees Limit theorems for sequences of random trees |
topic_facet |
D-mean Invariance principle Kolmogorov-Smirnov Random trees |
description |
We consider a random tree and introduce a metric in the space of trees to define the "mean tree" as the tree minimizing the average distance to the random tree. When the resulting metric space is compact we have laws of large numbers and central limit theorems for sequence of independent identically distributed random trees. As application we propose tests to check if two samples of random trees have the same law. © 2008 Sociedad de Estadística e Investigación Operativa. |
title |
Limit theorems for sequences of random trees |
title_short |
Limit theorems for sequences of random trees |
title_full |
Limit theorems for sequences of random trees |
title_fullStr |
Limit theorems for sequences of random trees |
title_full_unstemmed |
Limit theorems for sequences of random trees |
title_sort |
limit theorems for sequences of random trees |
publishDate |
2009 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_11330686_v18_n2_p302_Balding http://hdl.handle.net/20.500.12110/paper_11330686_v18_n2_p302_Balding |
_version_ |
1768546362076430336 |