Uniform stability of the ball with respect to the first dirichlet and neumann ∞-eigenvalues
In this note we analyze how perturbations of a ball Br ⊂ ℝn behaves in terms of their first (non-trivial) Neumann and Dirichlet ∞-eigenvalues when a volume constraint Ln(Ω) = Ln(Br) is imposed. Our main result states that Ω is uniformly close to a ball when it has first Neumann and Dirichlet eigenva...
Guardado en:
Publicado: |
2018
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10726691_v2018_n_p_DaSilva http://hdl.handle.net/20.500.12110/paper_10726691_v2018_n_p_DaSilva |
Aporte de: |
Ejemplares similares
-
Uniform stability of the ball with respect to the first dirichlet and neumann ∞-eigenvalues
por: Da Silva, J.V., et al. -
On the first nontrivial eigenvalue of the ∞-laplacian with neumann boundary conditions
por: Rossi, Julio Daniel
Publicado: (2016) -
On the first nontrivial eigenvalue of the ∞-laplacian with neumann boundary conditions
por: Rossi, J.D., et al. -
Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods
por: Alonso, Ana Esther, et al.
Publicado: (2009) -
The first nontrivial eigenvalue for a system of p-Laplacians with Neumann and Dirichlet boundary conditions
por: Del Pezzo, Leandro M., et al.
Publicado: (2016)