Eigenvalues homogenization for the fractional p-laplacian

In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered. © 2016 Texas St...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Salort, Ariel Martín
Publicado: 2016
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10726691_v2016_n_p_Salort
http://hdl.handle.net/20.500.12110/paper_10726691_v2016_n_p_Salort
Aporte de:
id paper:paper_10726691_v2016_n_p_Salort
record_format dspace
spelling paper:paper_10726691_v2016_n_p_Salort2023-06-08T16:04:54Z Eigenvalues homogenization for the fractional p-laplacian Salort, Ariel Martín Eigenvalue homogenization Fractional p-Laplacian Nonlinear eigenvalues Order of convergence In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered. © 2016 Texas State University. Fil:Salort, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2016 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10726691_v2016_n_p_Salort http://hdl.handle.net/20.500.12110/paper_10726691_v2016_n_p_Salort
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Eigenvalue homogenization
Fractional p-Laplacian
Nonlinear eigenvalues
Order of convergence
spellingShingle Eigenvalue homogenization
Fractional p-Laplacian
Nonlinear eigenvalues
Order of convergence
Salort, Ariel Martín
Eigenvalues homogenization for the fractional p-laplacian
topic_facet Eigenvalue homogenization
Fractional p-Laplacian
Nonlinear eigenvalues
Order of convergence
description In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered. © 2016 Texas State University.
author Salort, Ariel Martín
author_facet Salort, Ariel Martín
author_sort Salort, Ariel Martín
title Eigenvalues homogenization for the fractional p-laplacian
title_short Eigenvalues homogenization for the fractional p-laplacian
title_full Eigenvalues homogenization for the fractional p-laplacian
title_fullStr Eigenvalues homogenization for the fractional p-laplacian
title_full_unstemmed Eigenvalues homogenization for the fractional p-laplacian
title_sort eigenvalues homogenization for the fractional p-laplacian
publishDate 2016
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10726691_v2016_n_p_Salort
http://hdl.handle.net/20.500.12110/paper_10726691_v2016_n_p_Salort
work_keys_str_mv AT salortarielmartin eigenvalueshomogenizationforthefractionalplaplacian
_version_ 1768544238448934912