Vortices in Bose-Einstein condensates with dominant dipolar interactions

We present full three-dimensional numerical calculations of single vortex states in rotating dipolar condensates. We consider a Bose-Einstein condensate of C 52 r atoms with dipole-dipole and s -wave contact interactions confined in an axially symmetric harmonic trap. We obtain the vortex states by...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Jezek, Dora Marta
Publicado: 2009
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v79_n6_p_Abad
http://hdl.handle.net/20.500.12110/paper_10502947_v79_n6_p_Abad
Aporte de:
id paper:paper_10502947_v79_n6_p_Abad
record_format dspace
spelling paper:paper_10502947_v79_n6_p_Abad2025-07-30T18:38:28Z Vortices in Bose-Einstein condensates with dominant dipolar interactions Jezek, Dora Marta Axially symmetric Bose-Einstein condensates Contact interaction Dipolar interaction Dipole-dipole Exact solution Gross-Pitaevskii equation Harmonic trap Rotating frame Rotating trap Rotation axis S-wave scattering lengths Single vortices Three-dimensional numerical calculations Variational approaches Vortex displacements Vortex state Angular velocity Bose-Einstein condensation Electromagnetic wave scattering Rotation Shear waves Steam condensers Vortex flow We present full three-dimensional numerical calculations of single vortex states in rotating dipolar condensates. We consider a Bose-Einstein condensate of C 52 r atoms with dipole-dipole and s -wave contact interactions confined in an axially symmetric harmonic trap. We obtain the vortex states by numerically solving the Gross-Pitaevskii equation in the rotating frame with no further approximations. We investigate the properties of a single vortex and calculate the critical angular velocity for different values of the s -wave scattering length. We show that, whereas the standard variational approach breaks down in the limit of pure dipolar interactions, exact solutions of the Gross-Pitaevskii equation can be obtained for values of the s -wave scattering length down to zero. The energy barrier for the nucleation of a vortex is calculated as a function of the vortex displacement from the rotation axis for different values of the angular velocity of the rotating trap. © 2009 The American Physical Society. Fil:Jezek, D.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v79_n6_p_Abad http://hdl.handle.net/20.500.12110/paper_10502947_v79_n6_p_Abad
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Axially symmetric
Bose-Einstein condensates
Contact interaction
Dipolar interaction
Dipole-dipole
Exact solution
Gross-Pitaevskii equation
Harmonic trap
Rotating frame
Rotating trap
Rotation axis
S-wave scattering lengths
Single vortices
Three-dimensional numerical calculations
Variational approaches
Vortex displacements
Vortex state
Angular velocity
Bose-Einstein condensation
Electromagnetic wave scattering
Rotation
Shear waves
Steam condensers
Vortex flow
spellingShingle Axially symmetric
Bose-Einstein condensates
Contact interaction
Dipolar interaction
Dipole-dipole
Exact solution
Gross-Pitaevskii equation
Harmonic trap
Rotating frame
Rotating trap
Rotation axis
S-wave scattering lengths
Single vortices
Three-dimensional numerical calculations
Variational approaches
Vortex displacements
Vortex state
Angular velocity
Bose-Einstein condensation
Electromagnetic wave scattering
Rotation
Shear waves
Steam condensers
Vortex flow
Jezek, Dora Marta
Vortices in Bose-Einstein condensates with dominant dipolar interactions
topic_facet Axially symmetric
Bose-Einstein condensates
Contact interaction
Dipolar interaction
Dipole-dipole
Exact solution
Gross-Pitaevskii equation
Harmonic trap
Rotating frame
Rotating trap
Rotation axis
S-wave scattering lengths
Single vortices
Three-dimensional numerical calculations
Variational approaches
Vortex displacements
Vortex state
Angular velocity
Bose-Einstein condensation
Electromagnetic wave scattering
Rotation
Shear waves
Steam condensers
Vortex flow
description We present full three-dimensional numerical calculations of single vortex states in rotating dipolar condensates. We consider a Bose-Einstein condensate of C 52 r atoms with dipole-dipole and s -wave contact interactions confined in an axially symmetric harmonic trap. We obtain the vortex states by numerically solving the Gross-Pitaevskii equation in the rotating frame with no further approximations. We investigate the properties of a single vortex and calculate the critical angular velocity for different values of the s -wave scattering length. We show that, whereas the standard variational approach breaks down in the limit of pure dipolar interactions, exact solutions of the Gross-Pitaevskii equation can be obtained for values of the s -wave scattering length down to zero. The energy barrier for the nucleation of a vortex is calculated as a function of the vortex displacement from the rotation axis for different values of the angular velocity of the rotating trap. © 2009 The American Physical Society.
author Jezek, Dora Marta
author_facet Jezek, Dora Marta
author_sort Jezek, Dora Marta
title Vortices in Bose-Einstein condensates with dominant dipolar interactions
title_short Vortices in Bose-Einstein condensates with dominant dipolar interactions
title_full Vortices in Bose-Einstein condensates with dominant dipolar interactions
title_fullStr Vortices in Bose-Einstein condensates with dominant dipolar interactions
title_full_unstemmed Vortices in Bose-Einstein condensates with dominant dipolar interactions
title_sort vortices in bose-einstein condensates with dominant dipolar interactions
publishDate 2009
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v79_n6_p_Abad
http://hdl.handle.net/20.500.12110/paper_10502947_v79_n6_p_Abad
work_keys_str_mv AT jezekdoramarta vorticesinboseeinsteincondensateswithdominantdipolarinteractions
_version_ 1840328266182819840