Bose-Einstein-condensate superfluid-Mott-insulator transition in an optical lattice
We present an analytical model for a cold bosonic gas on an optical lattice (with densities of the order of 1 particle per site), targeting the critical regime of the Bose-Einstein-condensate superfluid-Mott-insulator transition. We focus on the computation of the one-body density matrix and its Fou...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2006
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v73_n2_p_Calzetta http://hdl.handle.net/20.500.12110/paper_10502947_v73_n2_p_Calzetta |
Aporte de: |
id |
paper:paper_10502947_v73_n2_p_Calzetta |
---|---|
record_format |
dspace |
spelling |
paper:paper_10502947_v73_n2_p_Calzetta2023-06-08T16:02:20Z Bose-Einstein-condensate superfluid-Mott-insulator transition in an optical lattice Calzetta, Esteban Adolfo Approximation theory Crystal lattices Fourier transforms Insulating materials Interpolation Perturbation techniques Bogoliubov approximation Bose-Einstein-condensation superfluid-Mott-insulator transition Strong-coupling perturbation theory Superfluid helium We present an analytical model for a cold bosonic gas on an optical lattice (with densities of the order of 1 particle per site), targeting the critical regime of the Bose-Einstein-condensate superfluid-Mott-insulator transition. We focus on the computation of the one-body density matrix and its Fourier transform, the momentum distribution which is directly obtainable from "time-of-flight" measurements. The expected number of particles with zero momentum may be identified with the condensate population if it is close to the total number of particles. Our main result is an analytic expression for this observable, interpolating between the known results valid for the two regimes separately: the standard Bogoliubov approximation valid in the superfluid regime and the strong-coupling perturbation theory valid in the Mott regime. © 2006 The American Physical Society. Fil:Calzetta, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2006 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v73_n2_p_Calzetta http://hdl.handle.net/20.500.12110/paper_10502947_v73_n2_p_Calzetta |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Approximation theory Crystal lattices Fourier transforms Insulating materials Interpolation Perturbation techniques Bogoliubov approximation Bose-Einstein-condensation superfluid-Mott-insulator transition Strong-coupling perturbation theory Superfluid helium |
spellingShingle |
Approximation theory Crystal lattices Fourier transforms Insulating materials Interpolation Perturbation techniques Bogoliubov approximation Bose-Einstein-condensation superfluid-Mott-insulator transition Strong-coupling perturbation theory Superfluid helium Calzetta, Esteban Adolfo Bose-Einstein-condensate superfluid-Mott-insulator transition in an optical lattice |
topic_facet |
Approximation theory Crystal lattices Fourier transforms Insulating materials Interpolation Perturbation techniques Bogoliubov approximation Bose-Einstein-condensation superfluid-Mott-insulator transition Strong-coupling perturbation theory Superfluid helium |
description |
We present an analytical model for a cold bosonic gas on an optical lattice (with densities of the order of 1 particle per site), targeting the critical regime of the Bose-Einstein-condensate superfluid-Mott-insulator transition. We focus on the computation of the one-body density matrix and its Fourier transform, the momentum distribution which is directly obtainable from "time-of-flight" measurements. The expected number of particles with zero momentum may be identified with the condensate population if it is close to the total number of particles. Our main result is an analytic expression for this observable, interpolating between the known results valid for the two regimes separately: the standard Bogoliubov approximation valid in the superfluid regime and the strong-coupling perturbation theory valid in the Mott regime. © 2006 The American Physical Society. |
author |
Calzetta, Esteban Adolfo |
author_facet |
Calzetta, Esteban Adolfo |
author_sort |
Calzetta, Esteban Adolfo |
title |
Bose-Einstein-condensate superfluid-Mott-insulator transition in an optical lattice |
title_short |
Bose-Einstein-condensate superfluid-Mott-insulator transition in an optical lattice |
title_full |
Bose-Einstein-condensate superfluid-Mott-insulator transition in an optical lattice |
title_fullStr |
Bose-Einstein-condensate superfluid-Mott-insulator transition in an optical lattice |
title_full_unstemmed |
Bose-Einstein-condensate superfluid-Mott-insulator transition in an optical lattice |
title_sort |
bose-einstein-condensate superfluid-mott-insulator transition in an optical lattice |
publishDate |
2006 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v73_n2_p_Calzetta http://hdl.handle.net/20.500.12110/paper_10502947_v73_n2_p_Calzetta |
work_keys_str_mv |
AT calzettaestebanadolfo boseeinsteincondensatesuperfluidmottinsulatortransitioninanopticallattice |
_version_ |
1768544969357787136 |