Robust nonparametric regression on Riemannian manifolds

In this study, we introduce two families of robust kernel-based regression estimators when the regressors are random objects taking values in a Riemannian manifold. The first proposal is a local M-estimator based on kernel methods, adapted to the geometry of the manifold. For the second proposal, th...

Descripción completa

Detalles Bibliográficos
Autores principales: Henry, Guillermo Sebastián, Rodríguez, Daniela Andrea
Publicado: 2009
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10485252_v21_n5_p611_Henry
http://hdl.handle.net/20.500.12110/paper_10485252_v21_n5_p611_Henry
Aporte de:
id paper:paper_10485252_v21_n5_p611_Henry
record_format dspace
spelling paper:paper_10485252_v21_n5_p611_Henry2023-06-08T16:01:19Z Robust nonparametric regression on Riemannian manifolds Henry, Guillermo Sebastián Rodríguez, Daniela Andrea K-nearest neighbour weights Kernel weights Nonparametric regression Riemannian manifolds Robust estimation In this study, we introduce two families of robust kernel-based regression estimators when the regressors are random objects taking values in a Riemannian manifold. The first proposal is a local M-estimator based on kernel methods, adapted to the geometry of the manifold. For the second proposal, the weights are based on k-nearest neighbour kernel methods. Strong uniform consistent results as well as the asymptotical normality of both families are established. Finally, a Monte Carlo study is carried out to compare the performance of the robust proposed estimators with that of the classical ones, in normal and contaminated samples and a cross-validation method is discussed. © 2009 Taylor & Francis. Fil:Henry, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rodriguez, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10485252_v21_n5_p611_Henry http://hdl.handle.net/20.500.12110/paper_10485252_v21_n5_p611_Henry
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic K-nearest neighbour weights
Kernel weights
Nonparametric regression
Riemannian manifolds
Robust estimation
spellingShingle K-nearest neighbour weights
Kernel weights
Nonparametric regression
Riemannian manifolds
Robust estimation
Henry, Guillermo Sebastián
Rodríguez, Daniela Andrea
Robust nonparametric regression on Riemannian manifolds
topic_facet K-nearest neighbour weights
Kernel weights
Nonparametric regression
Riemannian manifolds
Robust estimation
description In this study, we introduce two families of robust kernel-based regression estimators when the regressors are random objects taking values in a Riemannian manifold. The first proposal is a local M-estimator based on kernel methods, adapted to the geometry of the manifold. For the second proposal, the weights are based on k-nearest neighbour kernel methods. Strong uniform consistent results as well as the asymptotical normality of both families are established. Finally, a Monte Carlo study is carried out to compare the performance of the robust proposed estimators with that of the classical ones, in normal and contaminated samples and a cross-validation method is discussed. © 2009 Taylor & Francis.
author Henry, Guillermo Sebastián
Rodríguez, Daniela Andrea
author_facet Henry, Guillermo Sebastián
Rodríguez, Daniela Andrea
author_sort Henry, Guillermo Sebastián
title Robust nonparametric regression on Riemannian manifolds
title_short Robust nonparametric regression on Riemannian manifolds
title_full Robust nonparametric regression on Riemannian manifolds
title_fullStr Robust nonparametric regression on Riemannian manifolds
title_full_unstemmed Robust nonparametric regression on Riemannian manifolds
title_sort robust nonparametric regression on riemannian manifolds
publishDate 2009
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10485252_v21_n5_p611_Henry
http://hdl.handle.net/20.500.12110/paper_10485252_v21_n5_p611_Henry
work_keys_str_mv AT henryguillermosebastian robustnonparametricregressiononriemannianmanifolds
AT rodriguezdanielaandrea robustnonparametricregressiononriemannianmanifolds
_version_ 1768543144485322752