Optimal distributed control problem for cubic nonlinear Schrödinger equation
We consider an optimal internal control problem for the cubic nonlinear Schrödinger (NLS) equation on the line. We prove well-posedness of the problem and existence of an optimal control. In addition, we show first-order optimality conditions. Also, the paper includes the proof of a smoothing effect...
Guardado en:
Publicado: |
2018
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09324194_v30_n4_p_delaVega http://hdl.handle.net/20.500.12110/paper_09324194_v30_n4_p_delaVega |
Aporte de: |
Sumario: | We consider an optimal internal control problem for the cubic nonlinear Schrödinger (NLS) equation on the line. We prove well-posedness of the problem and existence of an optimal control. In addition, we show first-order optimality conditions. Also, the paper includes the proof of a smoothing effect for the non-homogeneous NLS, which is necessary to obtain the existence of an optimal control. © 2018, Springer-Verlag London Ltd., part of Springer Nature. |
---|