Optimal distributed control problem for cubic nonlinear Schrödinger equation

We consider an optimal internal control problem for the cubic nonlinear Schrödinger (NLS) equation on the line. We prove well-posedness of the problem and existence of an optimal control. In addition, we show first-order optimality conditions. Also, the paper includes the proof of a smoothing effect...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2018
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09324194_v30_n4_p_delaVega
http://hdl.handle.net/20.500.12110/paper_09324194_v30_n4_p_delaVega
Aporte de:
id paper:paper_09324194_v30_n4_p_delaVega
record_format dspace
spelling paper:paper_09324194_v30_n4_p_delaVega2023-06-08T15:53:11Z Optimal distributed control problem for cubic nonlinear Schrödinger equation Noise immunity Nonlinear Schrödinger equation Optical fibers Optimal control Nonlinear equations Optical fibers Dinger equation First-order optimality condition Internal controls Noise immunity Non-homogeneous Optimal controls Optimal distributed control problem Smoothing effects Nonlinear optics We consider an optimal internal control problem for the cubic nonlinear Schrödinger (NLS) equation on the line. We prove well-posedness of the problem and existence of an optimal control. In addition, we show first-order optimality conditions. Also, the paper includes the proof of a smoothing effect for the non-homogeneous NLS, which is necessary to obtain the existence of an optimal control. © 2018, Springer-Verlag London Ltd., part of Springer Nature. 2018 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09324194_v30_n4_p_delaVega http://hdl.handle.net/20.500.12110/paper_09324194_v30_n4_p_delaVega
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Noise immunity
Nonlinear Schrödinger equation
Optical fibers
Optimal control
Nonlinear equations
Optical fibers
Dinger equation
First-order optimality condition
Internal controls
Noise immunity
Non-homogeneous
Optimal controls
Optimal distributed control problem
Smoothing effects
Nonlinear optics
spellingShingle Noise immunity
Nonlinear Schrödinger equation
Optical fibers
Optimal control
Nonlinear equations
Optical fibers
Dinger equation
First-order optimality condition
Internal controls
Noise immunity
Non-homogeneous
Optimal controls
Optimal distributed control problem
Smoothing effects
Nonlinear optics
Optimal distributed control problem for cubic nonlinear Schrödinger equation
topic_facet Noise immunity
Nonlinear Schrödinger equation
Optical fibers
Optimal control
Nonlinear equations
Optical fibers
Dinger equation
First-order optimality condition
Internal controls
Noise immunity
Non-homogeneous
Optimal controls
Optimal distributed control problem
Smoothing effects
Nonlinear optics
description We consider an optimal internal control problem for the cubic nonlinear Schrödinger (NLS) equation on the line. We prove well-posedness of the problem and existence of an optimal control. In addition, we show first-order optimality conditions. Also, the paper includes the proof of a smoothing effect for the non-homogeneous NLS, which is necessary to obtain the existence of an optimal control. © 2018, Springer-Verlag London Ltd., part of Springer Nature.
title Optimal distributed control problem for cubic nonlinear Schrödinger equation
title_short Optimal distributed control problem for cubic nonlinear Schrödinger equation
title_full Optimal distributed control problem for cubic nonlinear Schrödinger equation
title_fullStr Optimal distributed control problem for cubic nonlinear Schrödinger equation
title_full_unstemmed Optimal distributed control problem for cubic nonlinear Schrödinger equation
title_sort optimal distributed control problem for cubic nonlinear schrödinger equation
publishDate 2018
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09324194_v30_n4_p_delaVega
http://hdl.handle.net/20.500.12110/paper_09324194_v30_n4_p_delaVega
_version_ 1768544092054093824