Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: Modeling for its applications in biomolecule detection

We report the numerical simulation of an electrochemical system compromising a mesoporous material placed at a close distance of a working electrode. The effect of mesoscopic domains to the amperometric response of an electroactive species by applying a cyclic voltammetry is simulated to establish t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gonzalez, Graciela Alicia, Priano, Graciela Inés, Battaglini, Fernando
Publicado: 2010
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09254005_v144_n2_p349_Gonzalez
http://hdl.handle.net/20.500.12110/paper_09254005_v144_n2_p349_Gonzalez
Aporte de:
id paper:paper_09254005_v144_n2_p349_Gonzalez
record_format dspace
spelling paper:paper_09254005_v144_n2_p349_Gonzalez2023-06-08T15:51:15Z Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: Modeling for its applications in biomolecule detection Gonzalez, Graciela Alicia Priano, Graciela Inés Battaglini, Fernando Amperometry Digital simulation Label-free sensing Mesoporous membrane Alumina membranes Amperometric response Amperometry Biomolecule detection Close distance Digital simulation Electroactive species Electrochemical systems Horse-radish peroxidase Label free Label-free sensing Mass transport Mesoporous membranes Mesoscopics Model system Numerical simulation Protein concentrations Reproducible behavior Working electrode Computer simulation Cyclic voltammetry Labels Mesoporous materials Optical devices Superconducting materials Mathematical models We report the numerical simulation of an electrochemical system compromising a mesoporous material placed at a close distance of a working electrode. The effect of mesoscopic domains to the amperometric response of an electroactive species by applying a cyclic voltammetry is simulated to establish the influence of different parameters on the sensitivity of this system to detect molecules able to block the pores. Alumina membranes were chosen as mesoporous material; they were modified with anti-horseradish peroxidase as model system to test the behavior predicted by the simulation. The label-free assembled electrochemical system shows a reproducible behavior and it is able to detect a 10 nM protein concentration. © 2008 Elsevier B.V. All rights reserved. Fil:González, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Priano, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Battaglini, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2010 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09254005_v144_n2_p349_Gonzalez http://hdl.handle.net/20.500.12110/paper_09254005_v144_n2_p349_Gonzalez
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Amperometry
Digital simulation
Label-free sensing
Mesoporous membrane
Alumina membranes
Amperometric response
Amperometry
Biomolecule detection
Close distance
Digital simulation
Electroactive species
Electrochemical systems
Horse-radish peroxidase
Label free
Label-free sensing
Mass transport
Mesoporous membranes
Mesoscopics
Model system
Numerical simulation
Protein concentrations
Reproducible behavior
Working electrode
Computer simulation
Cyclic voltammetry
Labels
Mesoporous materials
Optical devices
Superconducting materials
Mathematical models
spellingShingle Amperometry
Digital simulation
Label-free sensing
Mesoporous membrane
Alumina membranes
Amperometric response
Amperometry
Biomolecule detection
Close distance
Digital simulation
Electroactive species
Electrochemical systems
Horse-radish peroxidase
Label free
Label-free sensing
Mass transport
Mesoporous membranes
Mesoscopics
Model system
Numerical simulation
Protein concentrations
Reproducible behavior
Working electrode
Computer simulation
Cyclic voltammetry
Labels
Mesoporous materials
Optical devices
Superconducting materials
Mathematical models
Gonzalez, Graciela Alicia
Priano, Graciela Inés
Battaglini, Fernando
Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: Modeling for its applications in biomolecule detection
topic_facet Amperometry
Digital simulation
Label-free sensing
Mesoporous membrane
Alumina membranes
Amperometric response
Amperometry
Biomolecule detection
Close distance
Digital simulation
Electroactive species
Electrochemical systems
Horse-radish peroxidase
Label free
Label-free sensing
Mass transport
Mesoporous membranes
Mesoscopics
Model system
Numerical simulation
Protein concentrations
Reproducible behavior
Working electrode
Computer simulation
Cyclic voltammetry
Labels
Mesoporous materials
Optical devices
Superconducting materials
Mathematical models
description We report the numerical simulation of an electrochemical system compromising a mesoporous material placed at a close distance of a working electrode. The effect of mesoscopic domains to the amperometric response of an electroactive species by applying a cyclic voltammetry is simulated to establish the influence of different parameters on the sensitivity of this system to detect molecules able to block the pores. Alumina membranes were chosen as mesoporous material; they were modified with anti-horseradish peroxidase as model system to test the behavior predicted by the simulation. The label-free assembled electrochemical system shows a reproducible behavior and it is able to detect a 10 nM protein concentration. © 2008 Elsevier B.V. All rights reserved.
author Gonzalez, Graciela Alicia
Priano, Graciela Inés
Battaglini, Fernando
author_facet Gonzalez, Graciela Alicia
Priano, Graciela Inés
Battaglini, Fernando
author_sort Gonzalez, Graciela Alicia
title Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: Modeling for its applications in biomolecule detection
title_short Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: Modeling for its applications in biomolecule detection
title_full Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: Modeling for its applications in biomolecule detection
title_fullStr Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: Modeling for its applications in biomolecule detection
title_full_unstemmed Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: Modeling for its applications in biomolecule detection
title_sort mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: modeling for its applications in biomolecule detection
publishDate 2010
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09254005_v144_n2_p349_Gonzalez
http://hdl.handle.net/20.500.12110/paper_09254005_v144_n2_p349_Gonzalez
work_keys_str_mv AT gonzalezgracielaalicia masstransporteffectofmesoscopicdomainsintheamperometricresponseofanelectroactivespeciesmodelingforitsapplicationsinbiomoleculedetection
AT prianogracielaines masstransporteffectofmesoscopicdomainsintheamperometricresponseofanelectroactivespeciesmodelingforitsapplicationsinbiomoleculedetection
AT battaglinifernando masstransporteffectofmesoscopicdomainsintheamperometricresponseofanelectroactivespeciesmodelingforitsapplicationsinbiomoleculedetection
_version_ 1768542042385809408