Nonsimultaneous quenching
We study the possibility of nonsimultaneous quenching for positive solutions of a coupled system of two semilinear heat equations, ut = uxx - v-p, vt = vxx - u-q, p, q > 0, with homogeneous Neumann boundary conditions and positive initial data. Under some assumptions on the initial data, we p...
Guardado en:
Publicado: |
2002
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08939659_v15_n3_p265_DePablo http://hdl.handle.net/20.500.12110/paper_08939659_v15_n3_p265_DePablo |
Aporte de: |
id |
paper:paper_08939659_v15_n3_p265_DePablo |
---|---|
record_format |
dspace |
spelling |
paper:paper_08939659_v15_n3_p265_DePablo2023-06-08T15:47:36Z Nonsimultaneous quenching Quenching Semilinear parabolic system We study the possibility of nonsimultaneous quenching for positive solutions of a coupled system of two semilinear heat equations, ut = uxx - v-p, vt = vxx - u-q, p, q > 0, with homogeneous Neumann boundary conditions and positive initial data. Under some assumptions on the initial data, we prove that if p,q ≥ 1, then quenching is always simultaneous, if p < 1 or q < 1, then there exists a wide class of initial data with nonsimultaneous quenching, and finally, if p < 1 ≤ q or q < 1 ≤ p, then quenching is always nonsimultaneous. We also give the quenching rates in all cases. © 2002 Elsevier Science Ltd. All rights reserved. 2002 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08939659_v15_n3_p265_DePablo http://hdl.handle.net/20.500.12110/paper_08939659_v15_n3_p265_DePablo |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Quenching Semilinear parabolic system |
spellingShingle |
Quenching Semilinear parabolic system Nonsimultaneous quenching |
topic_facet |
Quenching Semilinear parabolic system |
description |
We study the possibility of nonsimultaneous quenching for positive solutions of a coupled system of two semilinear heat equations, ut = uxx - v-p, vt = vxx - u-q, p, q > 0, with homogeneous Neumann boundary conditions and positive initial data. Under some assumptions on the initial data, we prove that if p,q ≥ 1, then quenching is always simultaneous, if p < 1 or q < 1, then there exists a wide class of initial data with nonsimultaneous quenching, and finally, if p < 1 ≤ q or q < 1 ≤ p, then quenching is always nonsimultaneous. We also give the quenching rates in all cases. © 2002 Elsevier Science Ltd. All rights reserved. |
title |
Nonsimultaneous quenching |
title_short |
Nonsimultaneous quenching |
title_full |
Nonsimultaneous quenching |
title_fullStr |
Nonsimultaneous quenching |
title_full_unstemmed |
Nonsimultaneous quenching |
title_sort |
nonsimultaneous quenching |
publishDate |
2002 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08939659_v15_n3_p265_DePablo http://hdl.handle.net/20.500.12110/paper_08939659_v15_n3_p265_DePablo |
_version_ |
1768545379484172288 |