Nonsimultaneous quenching

We study the possibility of nonsimultaneous quenching for positive solutions of a coupled system of two semilinear heat equations, ut = uxx - v-p, vt = vxx - u-q, p, q > 0, with homogeneous Neumann boundary conditions and positive initial data. Under some assumptions on the initial data, we p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2002
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08939659_v15_n3_p265_DePablo
http://hdl.handle.net/20.500.12110/paper_08939659_v15_n3_p265_DePablo
Aporte de:
id paper:paper_08939659_v15_n3_p265_DePablo
record_format dspace
spelling paper:paper_08939659_v15_n3_p265_DePablo2023-06-08T15:47:36Z Nonsimultaneous quenching Quenching Semilinear parabolic system We study the possibility of nonsimultaneous quenching for positive solutions of a coupled system of two semilinear heat equations, ut = uxx - v-p, vt = vxx - u-q, p, q > 0, with homogeneous Neumann boundary conditions and positive initial data. Under some assumptions on the initial data, we prove that if p,q ≥ 1, then quenching is always simultaneous, if p < 1 or q < 1, then there exists a wide class of initial data with nonsimultaneous quenching, and finally, if p < 1 ≤ q or q < 1 ≤ p, then quenching is always nonsimultaneous. We also give the quenching rates in all cases. © 2002 Elsevier Science Ltd. All rights reserved. 2002 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08939659_v15_n3_p265_DePablo http://hdl.handle.net/20.500.12110/paper_08939659_v15_n3_p265_DePablo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Quenching
Semilinear parabolic system
spellingShingle Quenching
Semilinear parabolic system
Nonsimultaneous quenching
topic_facet Quenching
Semilinear parabolic system
description We study the possibility of nonsimultaneous quenching for positive solutions of a coupled system of two semilinear heat equations, ut = uxx - v-p, vt = vxx - u-q, p, q > 0, with homogeneous Neumann boundary conditions and positive initial data. Under some assumptions on the initial data, we prove that if p,q ≥ 1, then quenching is always simultaneous, if p < 1 or q < 1, then there exists a wide class of initial data with nonsimultaneous quenching, and finally, if p < 1 ≤ q or q < 1 ≤ p, then quenching is always nonsimultaneous. We also give the quenching rates in all cases. © 2002 Elsevier Science Ltd. All rights reserved.
title Nonsimultaneous quenching
title_short Nonsimultaneous quenching
title_full Nonsimultaneous quenching
title_fullStr Nonsimultaneous quenching
title_full_unstemmed Nonsimultaneous quenching
title_sort nonsimultaneous quenching
publishDate 2002
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_08939659_v15_n3_p265_DePablo
http://hdl.handle.net/20.500.12110/paper_08939659_v15_n3_p265_DePablo
_version_ 1768545379484172288