Factoring bivariate sparse (lacunary) polynomials
We present a deterministic algorithm for computing all irreducible factors of degree ≤ d of a given bivariate polynomial f ∈ K [x, y] over an algebraic number field K and their multiplicities, whose running time is polynomial over the rationals, in the bit length of the sparse encoding of the input...
Guardado en:
Autores principales: | , , |
---|---|
Publicado: |
2007
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0885064X_v23_n2_p193_Avendano http://hdl.handle.net/20.500.12110/paper_0885064X_v23_n2_p193_Avendano |
Aporte de: |
id |
paper:paper_0885064X_v23_n2_p193_Avendano |
---|---|
record_format |
dspace |
spelling |
paper:paper_0885064X_v23_n2_p193_Avendano2023-06-08T15:46:37Z Factoring bivariate sparse (lacunary) polynomials Avendaño, Martín Krick, Teresa Elena Genoveva Sombra, Martín Height of points Lacunary (sparse) polynomials Lehmer's problem Polynomial factorization Algebra Degrees of freedom (mechanics) Factorization Problem solving Height of points Lacunary (sparse) polynomials Lehmer's problem Polynomial factorization Polynomials We present a deterministic algorithm for computing all irreducible factors of degree ≤ d of a given bivariate polynomial f ∈ K [x, y] over an algebraic number field K and their multiplicities, whose running time is polynomial over the rationals, in the bit length of the sparse encoding of the input and in d. Moreover, we show that the factors over over(Q, -) of degree ≤ d which are not binomials can also be computed in time polynomial in the sparse length of the input and in d. © 2006 Elsevier Inc. All rights reserved. Fil:Avendaño, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sombra, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2007 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0885064X_v23_n2_p193_Avendano http://hdl.handle.net/20.500.12110/paper_0885064X_v23_n2_p193_Avendano |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Height of points Lacunary (sparse) polynomials Lehmer's problem Polynomial factorization Algebra Degrees of freedom (mechanics) Factorization Problem solving Height of points Lacunary (sparse) polynomials Lehmer's problem Polynomial factorization Polynomials |
spellingShingle |
Height of points Lacunary (sparse) polynomials Lehmer's problem Polynomial factorization Algebra Degrees of freedom (mechanics) Factorization Problem solving Height of points Lacunary (sparse) polynomials Lehmer's problem Polynomial factorization Polynomials Avendaño, Martín Krick, Teresa Elena Genoveva Sombra, Martín Factoring bivariate sparse (lacunary) polynomials |
topic_facet |
Height of points Lacunary (sparse) polynomials Lehmer's problem Polynomial factorization Algebra Degrees of freedom (mechanics) Factorization Problem solving Height of points Lacunary (sparse) polynomials Lehmer's problem Polynomial factorization Polynomials |
description |
We present a deterministic algorithm for computing all irreducible factors of degree ≤ d of a given bivariate polynomial f ∈ K [x, y] over an algebraic number field K and their multiplicities, whose running time is polynomial over the rationals, in the bit length of the sparse encoding of the input and in d. Moreover, we show that the factors over over(Q, -) of degree ≤ d which are not binomials can also be computed in time polynomial in the sparse length of the input and in d. © 2006 Elsevier Inc. All rights reserved. |
author |
Avendaño, Martín Krick, Teresa Elena Genoveva Sombra, Martín |
author_facet |
Avendaño, Martín Krick, Teresa Elena Genoveva Sombra, Martín |
author_sort |
Avendaño, Martín |
title |
Factoring bivariate sparse (lacunary) polynomials |
title_short |
Factoring bivariate sparse (lacunary) polynomials |
title_full |
Factoring bivariate sparse (lacunary) polynomials |
title_fullStr |
Factoring bivariate sparse (lacunary) polynomials |
title_full_unstemmed |
Factoring bivariate sparse (lacunary) polynomials |
title_sort |
factoring bivariate sparse (lacunary) polynomials |
publishDate |
2007 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0885064X_v23_n2_p193_Avendano http://hdl.handle.net/20.500.12110/paper_0885064X_v23_n2_p193_Avendano |
work_keys_str_mv |
AT avendanomartin factoringbivariatesparselacunarypolynomials AT krickteresaelenagenoveva factoringbivariatesparselacunarypolynomials AT sombramartin factoringbivariatesparselacunarypolynomials |
_version_ |
1768542273640857600 |