Numerical analysis of stochastic differential equations with explosions
Stochastic ordinary differential equations may have solutions that explode in finite or infinite time. In this article we design an adaptive numerical scheme that reproduces the explosive behavior. The time step is adapted according to the size of the computed solution in such a way that, under adeq...
Guardado en:
Autores principales: | , , |
---|---|
Publicado: |
2005
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07362994_v23_n4_p809_Davila http://hdl.handle.net/20.500.12110/paper_07362994_v23_n4_p809_Davila |
Aporte de: |
id |
paper:paper_07362994_v23_n4_p809_Davila |
---|---|
record_format |
dspace |
spelling |
paper:paper_07362994_v23_n4_p809_Davila2023-06-08T15:44:10Z Numerical analysis of stochastic differential equations with explosions Rossi, Julio Daniel Groisman, Pablo Jose Sued, Mariela Explosion Numerical approximations Stochastic differential equations Stochastic ordinary differential equations may have solutions that explode in finite or infinite time. In this article we design an adaptive numerical scheme that reproduces the explosive behavior. The time step is adapted according to the size of the computed solution in such a way that, under adequate hypotheses, the explosion of the solutions is reproduced. Copyright © Taylor & Francis, Inc. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Groisman, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sued, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2005 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07362994_v23_n4_p809_Davila http://hdl.handle.net/20.500.12110/paper_07362994_v23_n4_p809_Davila |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Explosion Numerical approximations Stochastic differential equations |
spellingShingle |
Explosion Numerical approximations Stochastic differential equations Rossi, Julio Daniel Groisman, Pablo Jose Sued, Mariela Numerical analysis of stochastic differential equations with explosions |
topic_facet |
Explosion Numerical approximations Stochastic differential equations |
description |
Stochastic ordinary differential equations may have solutions that explode in finite or infinite time. In this article we design an adaptive numerical scheme that reproduces the explosive behavior. The time step is adapted according to the size of the computed solution in such a way that, under adequate hypotheses, the explosion of the solutions is reproduced. Copyright © Taylor & Francis, Inc. |
author |
Rossi, Julio Daniel Groisman, Pablo Jose Sued, Mariela |
author_facet |
Rossi, Julio Daniel Groisman, Pablo Jose Sued, Mariela |
author_sort |
Rossi, Julio Daniel |
title |
Numerical analysis of stochastic differential equations with explosions |
title_short |
Numerical analysis of stochastic differential equations with explosions |
title_full |
Numerical analysis of stochastic differential equations with explosions |
title_fullStr |
Numerical analysis of stochastic differential equations with explosions |
title_full_unstemmed |
Numerical analysis of stochastic differential equations with explosions |
title_sort |
numerical analysis of stochastic differential equations with explosions |
publishDate |
2005 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07362994_v23_n4_p809_Davila http://hdl.handle.net/20.500.12110/paper_07362994_v23_n4_p809_Davila |
work_keys_str_mv |
AT rossijuliodaniel numericalanalysisofstochasticdifferentialequationswithexplosions AT groismanpablojose numericalanalysisofstochasticdifferentialequationswithexplosions AT suedmariela numericalanalysisofstochasticdifferentialequationswithexplosions |
_version_ |
1768546632863842304 |