Info-quantifiers' map-characterization revisited

We highlight the potentiality of a special Information Theory (IT) approach in order to unravel the intricacies of nonlinear dynamics, the methodology being illustrated with reference to the logistic map. A rather surprising dynamic feature → plane-topography map becomes available. © 2010 Elsevier B...

Descripción completa

Detalles Bibliográficos
Publicado: 2010
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v389_n21_p4604_Rosso
http://hdl.handle.net/20.500.12110/paper_03784371_v389_n21_p4604_Rosso
Aporte de:
id paper:paper_03784371_v389_n21_p4604_Rosso
record_format dspace
spelling paper:paper_03784371_v389_n21_p4604_Rosso2023-06-08T15:40:12Z Info-quantifiers' map-characterization revisited Fisher Information Measure Information Theory Logistic map Nonlinear dynamical systems Probability distribution functions Shannon Entropy Time series Dynamic features Fisher information measures Logistic map Logistic maps Non-linear dynamics Shannon entropy Dynamical systems Entropy Fisher information matrix Information theory Nonlinear dynamical systems Sailing vessels Time series Distribution functions We highlight the potentiality of a special Information Theory (IT) approach in order to unravel the intricacies of nonlinear dynamics, the methodology being illustrated with reference to the logistic map. A rather surprising dynamic feature → plane-topography map becomes available. © 2010 Elsevier B.V. All rights reserved. 2010 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v389_n21_p4604_Rosso http://hdl.handle.net/20.500.12110/paper_03784371_v389_n21_p4604_Rosso
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Fisher Information Measure
Information Theory
Logistic map
Nonlinear dynamical systems
Probability distribution functions
Shannon Entropy
Time series
Dynamic features
Fisher information measures
Logistic map
Logistic maps
Non-linear dynamics
Shannon entropy
Dynamical systems
Entropy
Fisher information matrix
Information theory
Nonlinear dynamical systems
Sailing vessels
Time series
Distribution functions
spellingShingle Fisher Information Measure
Information Theory
Logistic map
Nonlinear dynamical systems
Probability distribution functions
Shannon Entropy
Time series
Dynamic features
Fisher information measures
Logistic map
Logistic maps
Non-linear dynamics
Shannon entropy
Dynamical systems
Entropy
Fisher information matrix
Information theory
Nonlinear dynamical systems
Sailing vessels
Time series
Distribution functions
Info-quantifiers' map-characterization revisited
topic_facet Fisher Information Measure
Information Theory
Logistic map
Nonlinear dynamical systems
Probability distribution functions
Shannon Entropy
Time series
Dynamic features
Fisher information measures
Logistic map
Logistic maps
Non-linear dynamics
Shannon entropy
Dynamical systems
Entropy
Fisher information matrix
Information theory
Nonlinear dynamical systems
Sailing vessels
Time series
Distribution functions
description We highlight the potentiality of a special Information Theory (IT) approach in order to unravel the intricacies of nonlinear dynamics, the methodology being illustrated with reference to the logistic map. A rather surprising dynamic feature → plane-topography map becomes available. © 2010 Elsevier B.V. All rights reserved.
title Info-quantifiers' map-characterization revisited
title_short Info-quantifiers' map-characterization revisited
title_full Info-quantifiers' map-characterization revisited
title_fullStr Info-quantifiers' map-characterization revisited
title_full_unstemmed Info-quantifiers' map-characterization revisited
title_sort info-quantifiers' map-characterization revisited
publishDate 2010
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v389_n21_p4604_Rosso
http://hdl.handle.net/20.500.12110/paper_03784371_v389_n21_p4604_Rosso
_version_ 1768543850864836608