Thermodynamical irreversible approach for the stellar pulsation problem

In this paper, the stellar pulsation theory is reformulated following an irreversible thermodynamic approach (Lavenda, Thermodynamics of Irreversible Processes, Denver, New York, 1993). A general stability criterion and a thermodynamic Langrangian for the pulsating star problem are obtained using a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gonzalez, Rafael
Publicado: 2001
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v300_n3-4_p468_Costa
http://hdl.handle.net/20.500.12110/paper_03784371_v300_n3-4_p468_Costa
Aporte de:
id paper:paper_03784371_v300_n3-4_p468_Costa
record_format dspace
spelling paper:paper_03784371_v300_n3-4_p468_Costa2023-06-08T15:39:56Z Thermodynamical irreversible approach for the stellar pulsation problem Gonzalez, Rafael Maximum entropy principle Pulsating stars Thermodynamic irreversible approach Thermodynamic Lagrangian Variational method Eigenvalues and eigenfunctions Entropy Lagrange multipliers Variational techniques Stellar pulsation problem Free energy In this paper, the stellar pulsation theory is reformulated following an irreversible thermodynamic approach (Lavenda, Thermodynamics of Irreversible Processes, Denver, New York, 1993). A general stability criterion and a thermodynamic Langrangian for the pulsating star problem are obtained using a variational method (Sicardi and Ferro Fontán, Phys. Lett. 113A (1958) 263; Sicardi et al., J. Math. Phys. 32 (1991) 1350). This formulation, based on the calculation of a free energy excess function, is applied to the adiabatic, non-adiabatic, radial and non-radial cases and, as a result, the already known energy principles are obtained as particular cases of the general stability criterion mentioned above. Eigenvectors and eigenvalues can be calculated in a systematic way from the thermodynamic Lagrangian obtained for the general dissipative case (being independent of the adiabatic one). This allows a better determination of periods and oscillation frequencies. © 2001 Published by Elsevier Science B.V. Fil:González, R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2001 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v300_n3-4_p468_Costa http://hdl.handle.net/20.500.12110/paper_03784371_v300_n3-4_p468_Costa
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Maximum entropy principle
Pulsating stars
Thermodynamic irreversible approach
Thermodynamic Lagrangian
Variational method
Eigenvalues and eigenfunctions
Entropy
Lagrange multipliers
Variational techniques
Stellar pulsation problem
Free energy
spellingShingle Maximum entropy principle
Pulsating stars
Thermodynamic irreversible approach
Thermodynamic Lagrangian
Variational method
Eigenvalues and eigenfunctions
Entropy
Lagrange multipliers
Variational techniques
Stellar pulsation problem
Free energy
Gonzalez, Rafael
Thermodynamical irreversible approach for the stellar pulsation problem
topic_facet Maximum entropy principle
Pulsating stars
Thermodynamic irreversible approach
Thermodynamic Lagrangian
Variational method
Eigenvalues and eigenfunctions
Entropy
Lagrange multipliers
Variational techniques
Stellar pulsation problem
Free energy
description In this paper, the stellar pulsation theory is reformulated following an irreversible thermodynamic approach (Lavenda, Thermodynamics of Irreversible Processes, Denver, New York, 1993). A general stability criterion and a thermodynamic Langrangian for the pulsating star problem are obtained using a variational method (Sicardi and Ferro Fontán, Phys. Lett. 113A (1958) 263; Sicardi et al., J. Math. Phys. 32 (1991) 1350). This formulation, based on the calculation of a free energy excess function, is applied to the adiabatic, non-adiabatic, radial and non-radial cases and, as a result, the already known energy principles are obtained as particular cases of the general stability criterion mentioned above. Eigenvectors and eigenvalues can be calculated in a systematic way from the thermodynamic Lagrangian obtained for the general dissipative case (being independent of the adiabatic one). This allows a better determination of periods and oscillation frequencies. © 2001 Published by Elsevier Science B.V.
author Gonzalez, Rafael
author_facet Gonzalez, Rafael
author_sort Gonzalez, Rafael
title Thermodynamical irreversible approach for the stellar pulsation problem
title_short Thermodynamical irreversible approach for the stellar pulsation problem
title_full Thermodynamical irreversible approach for the stellar pulsation problem
title_fullStr Thermodynamical irreversible approach for the stellar pulsation problem
title_full_unstemmed Thermodynamical irreversible approach for the stellar pulsation problem
title_sort thermodynamical irreversible approach for the stellar pulsation problem
publishDate 2001
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v300_n3-4_p468_Costa
http://hdl.handle.net/20.500.12110/paper_03784371_v300_n3-4_p468_Costa
work_keys_str_mv AT gonzalezrafael thermodynamicalirreversibleapproachforthestellarpulsationproblem
_version_ 1768546726071762944