Maximum and antimaximum principles for some nonlocal diffusion operators
In this work we consider the maximum and antimaximum principles for the nonlocal Dirichlet problem J * u - u + λ u + h = ∫RN J (x - y) u (y) d y - u (x) + λ u (x) + h (x) = 0 in a bounded domain Ω, with u (x) = 0 in RN {set minus} Ω. The kernel J in the convolution is assumed to be a continuous, com...
Autor principal: | |
---|---|
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v71_n12_p6116_GarciaMelian http://hdl.handle.net/20.500.12110/paper_0362546X_v71_n12_p6116_GarciaMelian |
Aporte de: |
id |
paper:paper_0362546X_v71_n12_p6116_GarciaMelian |
---|---|
record_format |
dspace |
spelling |
paper:paper_0362546X_v71_n12_p6116_GarciaMelian2023-06-08T15:35:22Z Maximum and antimaximum principles for some nonlocal diffusion operators Rossi, Julio Daniel Antimaximum principle Maximum principle Nonlocal diffusion Principal eigenvalue Bounded domain Compactly supported Dirichlet problem Nonlocal Nonlocal diffusion Nonnegative functions Principal eigenvalues Diffusion Maximum principle Eigenvalues and eigenfunctions In this work we consider the maximum and antimaximum principles for the nonlocal Dirichlet problem J * u - u + λ u + h = ∫RN J (x - y) u (y) d y - u (x) + λ u (x) + h (x) = 0 in a bounded domain Ω, with u (x) = 0 in RN {set minus} Ω. The kernel J in the convolution is assumed to be a continuous, compactly supported nonnegative function with unit integral. We prove that for λ < λ1 (Ω), the solution verifies u > 0 in over(Ω, -) if h ∈ L2 (Ω), h ≥ 0, while for λ > λ1 (Ω), and λ close to λ1 (Ω), the solution verifies u < 0 in over(Ω, -), provided ∫Ω h (x) φ{symbol} (x) d x > 0, h ∈ L∞ (Ω). This last assumption is also shown to be optimal. The "Neumann" version of the problem is also analyzed. © 2009 Elsevier Ltd. All rights reserved. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v71_n12_p6116_GarciaMelian http://hdl.handle.net/20.500.12110/paper_0362546X_v71_n12_p6116_GarciaMelian |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Antimaximum principle Maximum principle Nonlocal diffusion Principal eigenvalue Bounded domain Compactly supported Dirichlet problem Nonlocal Nonlocal diffusion Nonnegative functions Principal eigenvalues Diffusion Maximum principle Eigenvalues and eigenfunctions |
spellingShingle |
Antimaximum principle Maximum principle Nonlocal diffusion Principal eigenvalue Bounded domain Compactly supported Dirichlet problem Nonlocal Nonlocal diffusion Nonnegative functions Principal eigenvalues Diffusion Maximum principle Eigenvalues and eigenfunctions Rossi, Julio Daniel Maximum and antimaximum principles for some nonlocal diffusion operators |
topic_facet |
Antimaximum principle Maximum principle Nonlocal diffusion Principal eigenvalue Bounded domain Compactly supported Dirichlet problem Nonlocal Nonlocal diffusion Nonnegative functions Principal eigenvalues Diffusion Maximum principle Eigenvalues and eigenfunctions |
description |
In this work we consider the maximum and antimaximum principles for the nonlocal Dirichlet problem J * u - u + λ u + h = ∫RN J (x - y) u (y) d y - u (x) + λ u (x) + h (x) = 0 in a bounded domain Ω, with u (x) = 0 in RN {set minus} Ω. The kernel J in the convolution is assumed to be a continuous, compactly supported nonnegative function with unit integral. We prove that for λ < λ1 (Ω), the solution verifies u > 0 in over(Ω, -) if h ∈ L2 (Ω), h ≥ 0, while for λ > λ1 (Ω), and λ close to λ1 (Ω), the solution verifies u < 0 in over(Ω, -), provided ∫Ω h (x) φ{symbol} (x) d x > 0, h ∈ L∞ (Ω). This last assumption is also shown to be optimal. The "Neumann" version of the problem is also analyzed. © 2009 Elsevier Ltd. All rights reserved. |
author |
Rossi, Julio Daniel |
author_facet |
Rossi, Julio Daniel |
author_sort |
Rossi, Julio Daniel |
title |
Maximum and antimaximum principles for some nonlocal diffusion operators |
title_short |
Maximum and antimaximum principles for some nonlocal diffusion operators |
title_full |
Maximum and antimaximum principles for some nonlocal diffusion operators |
title_fullStr |
Maximum and antimaximum principles for some nonlocal diffusion operators |
title_full_unstemmed |
Maximum and antimaximum principles for some nonlocal diffusion operators |
title_sort |
maximum and antimaximum principles for some nonlocal diffusion operators |
publishDate |
2009 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v71_n12_p6116_GarciaMelian http://hdl.handle.net/20.500.12110/paper_0362546X_v71_n12_p6116_GarciaMelian |
work_keys_str_mv |
AT rossijuliodaniel maximumandantimaximumprinciplesforsomenonlocaldiffusionoperators |
_version_ |
1768546303149604864 |