Numerical experiments on parameter estimation in acoustic media using the adjoint method

We present an algorithm to solve the problem of estimation of the wave speed in a layered acoustic medium. It is based on the adjoint method. Even though it is a fast algorithm, it is able to detect approximately the interfaces and estimate the amplitudes of the speed parameter. Numerical examples i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2002
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03270793_v32_n4_p337_FernandezBerdaguer
http://hdl.handle.net/20.500.12110/paper_03270793_v32_n4_p337_FernandezBerdaguer
Aporte de:
id paper:paper_03270793_v32_n4_p337_FernandezBerdaguer
record_format dspace
spelling paper:paper_03270793_v32_n4_p337_FernandezBerdaguer2023-06-08T15:33:09Z Numerical experiments on parameter estimation in acoustic media using the adjoint method Acoustic equation Finite element methods Inverse problems Seismic inversion Algorithms Finite element method Interfaces (materials) Inverse problems Iterative methods Mathematical models Parameter estimation Seismic waves Sensitivity analysis Adjoint method Seismic inversions Acoustic waves We present an algorithm to solve the problem of estimation of the wave speed in a layered acoustic medium. It is based on the adjoint method. Even though it is a fast algorithm, it is able to detect approximately the interfaces and estimate the amplitudes of the speed parameter. Numerical examples illustrate the application of the algorithm in seismic inversion. 2002 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03270793_v32_n4_p337_FernandezBerdaguer http://hdl.handle.net/20.500.12110/paper_03270793_v32_n4_p337_FernandezBerdaguer
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Acoustic equation
Finite element methods
Inverse problems
Seismic inversion
Algorithms
Finite element method
Interfaces (materials)
Inverse problems
Iterative methods
Mathematical models
Parameter estimation
Seismic waves
Sensitivity analysis
Adjoint method
Seismic inversions
Acoustic waves
spellingShingle Acoustic equation
Finite element methods
Inverse problems
Seismic inversion
Algorithms
Finite element method
Interfaces (materials)
Inverse problems
Iterative methods
Mathematical models
Parameter estimation
Seismic waves
Sensitivity analysis
Adjoint method
Seismic inversions
Acoustic waves
Numerical experiments on parameter estimation in acoustic media using the adjoint method
topic_facet Acoustic equation
Finite element methods
Inverse problems
Seismic inversion
Algorithms
Finite element method
Interfaces (materials)
Inverse problems
Iterative methods
Mathematical models
Parameter estimation
Seismic waves
Sensitivity analysis
Adjoint method
Seismic inversions
Acoustic waves
description We present an algorithm to solve the problem of estimation of the wave speed in a layered acoustic medium. It is based on the adjoint method. Even though it is a fast algorithm, it is able to detect approximately the interfaces and estimate the amplitudes of the speed parameter. Numerical examples illustrate the application of the algorithm in seismic inversion.
title Numerical experiments on parameter estimation in acoustic media using the adjoint method
title_short Numerical experiments on parameter estimation in acoustic media using the adjoint method
title_full Numerical experiments on parameter estimation in acoustic media using the adjoint method
title_fullStr Numerical experiments on parameter estimation in acoustic media using the adjoint method
title_full_unstemmed Numerical experiments on parameter estimation in acoustic media using the adjoint method
title_sort numerical experiments on parameter estimation in acoustic media using the adjoint method
publishDate 2002
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03270793_v32_n4_p337_FernandezBerdaguer
http://hdl.handle.net/20.500.12110/paper_03270793_v32_n4_p337_FernandezBerdaguer
_version_ 1768542598644891648