Goodness-of-fit test for directional data

In this paper, we study the problem of testing the hypothesis on whether the density f of a random variable on a sphere belongs to a given parametric class of densities. We propose two test statistics based on the L2 and L1 distances between a non-parametric density estimator adapted to circular dat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Boente, Graciela Lina, Rodríguez, Daniela Andrea
Publicado: 2013
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03036898_v_n_p_Boente
http://hdl.handle.net/20.500.12110/paper_03036898_v_n_p_Boente
Aporte de:
id paper:paper_03036898_v_n_p_Boente
record_format dspace
spelling paper:paper_03036898_v_n_p_Boente2023-06-08T15:28:59Z Goodness-of-fit test for directional data Boente, Graciela Lina Rodríguez, Daniela Andrea Asymptotic properties Bootstrap tests Density estimation Hypothesis testing Maximum likelihood estimators Spherical data Von Mises distribution In this paper, we study the problem of testing the hypothesis on whether the density f of a random variable on a sphere belongs to a given parametric class of densities. We propose two test statistics based on the L2 and L1 distances between a non-parametric density estimator adapted to circular data and a smoothed version of the specified density. The asymptotic distribution of the L2 test statistic is provided under the null hypothesis and contiguous alternatives. We also consider a bootstrap method to approximate the distribution of both test statistics. Through a simulation study, we explore the moderate sample performance of the proposed tests under the null hypothesis and under different alternatives. Finally, the procedure is illustrated by analysing a real data set based on wind direction measurements. © 2013 Board of the Foundation of the Scandinavian Journal of Statistics. Fil:Boente, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rodriguez, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2013 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03036898_v_n_p_Boente http://hdl.handle.net/20.500.12110/paper_03036898_v_n_p_Boente
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Asymptotic properties
Bootstrap tests
Density estimation
Hypothesis testing
Maximum likelihood estimators
Spherical data
Von Mises distribution
spellingShingle Asymptotic properties
Bootstrap tests
Density estimation
Hypothesis testing
Maximum likelihood estimators
Spherical data
Von Mises distribution
Boente, Graciela Lina
Rodríguez, Daniela Andrea
Goodness-of-fit test for directional data
topic_facet Asymptotic properties
Bootstrap tests
Density estimation
Hypothesis testing
Maximum likelihood estimators
Spherical data
Von Mises distribution
description In this paper, we study the problem of testing the hypothesis on whether the density f of a random variable on a sphere belongs to a given parametric class of densities. We propose two test statistics based on the L2 and L1 distances between a non-parametric density estimator adapted to circular data and a smoothed version of the specified density. The asymptotic distribution of the L2 test statistic is provided under the null hypothesis and contiguous alternatives. We also consider a bootstrap method to approximate the distribution of both test statistics. Through a simulation study, we explore the moderate sample performance of the proposed tests under the null hypothesis and under different alternatives. Finally, the procedure is illustrated by analysing a real data set based on wind direction measurements. © 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
author Boente, Graciela Lina
Rodríguez, Daniela Andrea
author_facet Boente, Graciela Lina
Rodríguez, Daniela Andrea
author_sort Boente, Graciela Lina
title Goodness-of-fit test for directional data
title_short Goodness-of-fit test for directional data
title_full Goodness-of-fit test for directional data
title_fullStr Goodness-of-fit test for directional data
title_full_unstemmed Goodness-of-fit test for directional data
title_sort goodness-of-fit test for directional data
publishDate 2013
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03036898_v_n_p_Boente
http://hdl.handle.net/20.500.12110/paper_03036898_v_n_p_Boente
work_keys_str_mv AT boentegracielalina goodnessoffittestfordirectionaldata
AT rodriguezdanielaandrea goodnessoffittestfordirectionaldata
_version_ 1768542126678736896