A local symmetry result for linear elliptic problems with solutions changing sign
We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS.
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02941449_v28_n4_p551_Canuto http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto |
Aporte de: |
id |
paper:paper_02941449_v28_n4_p551_Canuto |
---|---|
record_format |
dspace |
spelling |
paper:paper_02941449_v28_n4_p551_Canuto2023-06-08T15:27:04Z A local symmetry result for linear elliptic problems with solutions changing sign Canuto, Bruno Elliptic problem Following problem Lipschitz domain Local symmetry Unit ball We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS. Fil:Canuto, B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2011 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02941449_v28_n4_p551_Canuto http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Elliptic problem Following problem Lipschitz domain Local symmetry Unit ball |
spellingShingle |
Elliptic problem Following problem Lipschitz domain Local symmetry Unit ball Canuto, Bruno A local symmetry result for linear elliptic problems with solutions changing sign |
topic_facet |
Elliptic problem Following problem Lipschitz domain Local symmetry Unit ball |
description |
We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS. |
author |
Canuto, Bruno |
author_facet |
Canuto, Bruno |
author_sort |
Canuto, Bruno |
title |
A local symmetry result for linear elliptic problems with solutions changing sign |
title_short |
A local symmetry result for linear elliptic problems with solutions changing sign |
title_full |
A local symmetry result for linear elliptic problems with solutions changing sign |
title_fullStr |
A local symmetry result for linear elliptic problems with solutions changing sign |
title_full_unstemmed |
A local symmetry result for linear elliptic problems with solutions changing sign |
title_sort |
local symmetry result for linear elliptic problems with solutions changing sign |
publishDate |
2011 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02941449_v28_n4_p551_Canuto http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto |
work_keys_str_mv |
AT canutobruno alocalsymmetryresultforlinearellipticproblemswithsolutionschangingsign AT canutobruno localsymmetryresultforlinearellipticproblemswithsolutionschangingsign |
_version_ |
1768546158816264192 |