A local symmetry result for linear elliptic problems with solutions changing sign

We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS.

Guardado en:
Detalles Bibliográficos
Autor principal: Canuto, Bruno
Publicado: 2011
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02941449_v28_n4_p551_Canuto
http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto
Aporte de:
id paper:paper_02941449_v28_n4_p551_Canuto
record_format dspace
spelling paper:paper_02941449_v28_n4_p551_Canuto2023-06-08T15:27:04Z A local symmetry result for linear elliptic problems with solutions changing sign Canuto, Bruno Elliptic problem Following problem Lipschitz domain Local symmetry Unit ball We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS. Fil:Canuto, B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2011 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02941449_v28_n4_p551_Canuto http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Elliptic problem
Following problem
Lipschitz domain
Local symmetry
Unit ball
spellingShingle Elliptic problem
Following problem
Lipschitz domain
Local symmetry
Unit ball
Canuto, Bruno
A local symmetry result for linear elliptic problems with solutions changing sign
topic_facet Elliptic problem
Following problem
Lipschitz domain
Local symmetry
Unit ball
description We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS.
author Canuto, Bruno
author_facet Canuto, Bruno
author_sort Canuto, Bruno
title A local symmetry result for linear elliptic problems with solutions changing sign
title_short A local symmetry result for linear elliptic problems with solutions changing sign
title_full A local symmetry result for linear elliptic problems with solutions changing sign
title_fullStr A local symmetry result for linear elliptic problems with solutions changing sign
title_full_unstemmed A local symmetry result for linear elliptic problems with solutions changing sign
title_sort local symmetry result for linear elliptic problems with solutions changing sign
publishDate 2011
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02941449_v28_n4_p551_Canuto
http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto
work_keys_str_mv AT canutobruno alocalsymmetryresultforlinearellipticproblemswithsolutionschangingsign
AT canutobruno localsymmetryresultforlinearellipticproblemswithsolutionschangingsign
_version_ 1768546158816264192