Eigenvalue problems in a non-Lipschitz domain
In this paper we analyse piecewise linear finite element approximations of the Laplace eigenvalue problem in the plane domain Ω = (x,y): 0 < x < 1, 0 < y < x, which gives for 1< the simplest model of an external cusp. Since Ω is curved and non-Lipschitz, the classical spectral theory...
Guardado en:
Autores principales: | , |
---|---|
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02724979_v34_n1_p83_Acosta http://hdl.handle.net/20.500.12110/paper_02724979_v34_n1_p83_Acosta |
Aporte de: |
id |
paper:paper_02724979_v34_n1_p83_Acosta |
---|---|
record_format |
dspace |
spelling |
paper:paper_02724979_v34_n1_p83_Acosta2023-06-08T15:25:19Z Eigenvalue problems in a non-Lipschitz domain Acosta Rodriguez, Gabriel Armentano, Maria Gabriela cuspidal domains eigenvalue problems finite elements graded meshes In this paper we analyse piecewise linear finite element approximations of the Laplace eigenvalue problem in the plane domain Ω = (x,y): 0 < x < 1, 0 < y < x, which gives for 1< the simplest model of an external cusp. Since Ω is curved and non-Lipschitz, the classical spectral theory cannot be applied directly. We present the eigenvalue problem in a proper setting, and relying on known convergence results for the associated source problem with <3, we obtain a quasi-optimal order of convergence for the eigenpairs. © 2013 The authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. Fil:Acosta, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Armentano, M.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2014 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02724979_v34_n1_p83_Acosta http://hdl.handle.net/20.500.12110/paper_02724979_v34_n1_p83_Acosta |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
cuspidal domains eigenvalue problems finite elements graded meshes |
spellingShingle |
cuspidal domains eigenvalue problems finite elements graded meshes Acosta Rodriguez, Gabriel Armentano, Maria Gabriela Eigenvalue problems in a non-Lipschitz domain |
topic_facet |
cuspidal domains eigenvalue problems finite elements graded meshes |
description |
In this paper we analyse piecewise linear finite element approximations of the Laplace eigenvalue problem in the plane domain Ω = (x,y): 0 < x < 1, 0 < y < x, which gives for 1< the simplest model of an external cusp. Since Ω is curved and non-Lipschitz, the classical spectral theory cannot be applied directly. We present the eigenvalue problem in a proper setting, and relying on known convergence results for the associated source problem with <3, we obtain a quasi-optimal order of convergence for the eigenpairs. © 2013 The authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. |
author |
Acosta Rodriguez, Gabriel Armentano, Maria Gabriela |
author_facet |
Acosta Rodriguez, Gabriel Armentano, Maria Gabriela |
author_sort |
Acosta Rodriguez, Gabriel |
title |
Eigenvalue problems in a non-Lipschitz domain |
title_short |
Eigenvalue problems in a non-Lipschitz domain |
title_full |
Eigenvalue problems in a non-Lipschitz domain |
title_fullStr |
Eigenvalue problems in a non-Lipschitz domain |
title_full_unstemmed |
Eigenvalue problems in a non-Lipschitz domain |
title_sort |
eigenvalue problems in a non-lipschitz domain |
publishDate |
2014 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02724979_v34_n1_p83_Acosta http://hdl.handle.net/20.500.12110/paper_02724979_v34_n1_p83_Acosta |
work_keys_str_mv |
AT acostarodriguezgabriel eigenvalueproblemsinanonlipschitzdomain AT armentanomariagabriela eigenvalueproblemsinanonlipschitzdomain |
_version_ |
1768543322879557632 |