Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications

We consider perturbation of frames and frame sequences in a Hilbert space. It is known that small perturbations of a frame give rise to another frame. We show that the canonical dual of the perturbed sequence is a perturbation of the canonical dual of the original one and estimate the error in the a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Heineken, Sigrid Bettina, Paternostro, Victoria
Publicado: 2014
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02196913_v12_n2_p_Heineken
http://hdl.handle.net/20.500.12110/paper_02196913_v12_n2_p_Heineken
Aporte de:
id paper:paper_02196913_v12_n2_p_Heineken
record_format dspace
spelling paper:paper_02196913_v12_n2_p_Heineken2023-06-08T15:21:39Z Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications Heineken, Sigrid Bettina Paternostro, Victoria Approximate reconstructions Bandlimited functions Canonical duals Frames Irregular translates Riesz bases Band-limited functions Canonical duals Frames Irregular translates Riesz basis Vector spaces Hilbert spaces We consider perturbation of frames and frame sequences in a Hilbert space. It is known that small perturbations of a frame give rise to another frame. We show that the canonical dual of the perturbed sequence is a perturbation of the canonical dual of the original one and estimate the error in the approximation of functions belonging to the perturbed space. We then construct perturbations of irregular translates of a bandlimited function in L2(ℝ d). We give conditions for the perturbed sequence to inherit the property of being Riesz or frame sequence. For this case we again calculate the error in the approximation of functions that belong to the perturbed space and compare it with our previous estimation error for general Hilbert spaces. © 2014 World Scientific Publishing Company. Fil:Heineken, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Paternostro, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2014 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02196913_v12_n2_p_Heineken http://hdl.handle.net/20.500.12110/paper_02196913_v12_n2_p_Heineken
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Approximate reconstructions
Bandlimited functions
Canonical duals
Frames
Irregular translates
Riesz bases
Band-limited functions
Canonical duals
Frames
Irregular translates
Riesz basis
Vector spaces
Hilbert spaces
spellingShingle Approximate reconstructions
Bandlimited functions
Canonical duals
Frames
Irregular translates
Riesz bases
Band-limited functions
Canonical duals
Frames
Irregular translates
Riesz basis
Vector spaces
Hilbert spaces
Heineken, Sigrid Bettina
Paternostro, Victoria
Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications
topic_facet Approximate reconstructions
Bandlimited functions
Canonical duals
Frames
Irregular translates
Riesz bases
Band-limited functions
Canonical duals
Frames
Irregular translates
Riesz basis
Vector spaces
Hilbert spaces
description We consider perturbation of frames and frame sequences in a Hilbert space. It is known that small perturbations of a frame give rise to another frame. We show that the canonical dual of the perturbed sequence is a perturbation of the canonical dual of the original one and estimate the error in the approximation of functions belonging to the perturbed space. We then construct perturbations of irregular translates of a bandlimited function in L2(ℝ d). We give conditions for the perturbed sequence to inherit the property of being Riesz or frame sequence. For this case we again calculate the error in the approximation of functions that belong to the perturbed space and compare it with our previous estimation error for general Hilbert spaces. © 2014 World Scientific Publishing Company.
author Heineken, Sigrid Bettina
Paternostro, Victoria
author_facet Heineken, Sigrid Bettina
Paternostro, Victoria
author_sort Heineken, Sigrid Bettina
title Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications
title_short Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications
title_full Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications
title_fullStr Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications
title_full_unstemmed Perturbed frame sequences: Canonical dual systems, approximate reconstructions and applications
title_sort perturbed frame sequences: canonical dual systems, approximate reconstructions and applications
publishDate 2014
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02196913_v12_n2_p_Heineken
http://hdl.handle.net/20.500.12110/paper_02196913_v12_n2_p_Heineken
work_keys_str_mv AT heinekensigridbettina perturbedframesequencescanonicaldualsystemsapproximatereconstructionsandapplications
AT paternostrovictoria perturbedframesequencescanonicaldualsystemsapproximatereconstructionsandapplications
_version_ 1768542690209693696