On the a.s. convergence of certain random series to a fractional random field in D′(ℝd)
We prove the almost sure convergence in the sense of Schwartz distributions of certain random series. This result is useful to construct some type of fractional random fields. These series resemble the Karhunen-Loéve expansions. © 2005 Elsevier B.V. All rights reserved.
Publicado: |
2005
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01677152_v74_n1_p39_Medina http://hdl.handle.net/20.500.12110/paper_01677152_v74_n1_p39_Medina |
Aporte de: |
id |
paper:paper_01677152_v74_n1_p39_Medina |
---|---|
record_format |
dspace |
spelling |
paper:paper_01677152_v74_n1_p39_Medina2023-06-08T15:16:50Z On the a.s. convergence of certain random series to a fractional random field in D′(ℝd) Almost sure convergence Fractional integrals Fractional random fields Karhunen-Loéve expansions Long-range dependence Schwartz distributions We prove the almost sure convergence in the sense of Schwartz distributions of certain random series. This result is useful to construct some type of fractional random fields. These series resemble the Karhunen-Loéve expansions. © 2005 Elsevier B.V. All rights reserved. 2005 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01677152_v74_n1_p39_Medina http://hdl.handle.net/20.500.12110/paper_01677152_v74_n1_p39_Medina |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Almost sure convergence Fractional integrals Fractional random fields Karhunen-Loéve expansions Long-range dependence Schwartz distributions |
spellingShingle |
Almost sure convergence Fractional integrals Fractional random fields Karhunen-Loéve expansions Long-range dependence Schwartz distributions On the a.s. convergence of certain random series to a fractional random field in D′(ℝd) |
topic_facet |
Almost sure convergence Fractional integrals Fractional random fields Karhunen-Loéve expansions Long-range dependence Schwartz distributions |
description |
We prove the almost sure convergence in the sense of Schwartz distributions of certain random series. This result is useful to construct some type of fractional random fields. These series resemble the Karhunen-Loéve expansions. © 2005 Elsevier B.V. All rights reserved. |
title |
On the a.s. convergence of certain random series to a fractional random field in D′(ℝd) |
title_short |
On the a.s. convergence of certain random series to a fractional random field in D′(ℝd) |
title_full |
On the a.s. convergence of certain random series to a fractional random field in D′(ℝd) |
title_fullStr |
On the a.s. convergence of certain random series to a fractional random field in D′(ℝd) |
title_full_unstemmed |
On the a.s. convergence of certain random series to a fractional random field in D′(ℝd) |
title_sort |
on the a.s. convergence of certain random series to a fractional random field in d′(ℝd) |
publishDate |
2005 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01677152_v74_n1_p39_Medina http://hdl.handle.net/20.500.12110/paper_01677152_v74_n1_p39_Medina |
_version_ |
1768541651345604608 |