Additive edge labelings
Let G = (V, E) be a graph and d a positive integer. We study the following problem: for which labelings fE : E → Zd is there a labeling fV : V → Zd such that fE (i, j) = fV (i) + fV (j) (mod d), for every edge (i, j) ∈ E? We also explore the connections of the equivalent multiplicative version to to...
Guardado en:
Autores principales: | , |
---|---|
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v158_n5_p444_Dickenstein http://hdl.handle.net/20.500.12110/paper_0166218X_v158_n5_p444_Dickenstein |
Aporte de: |
id |
paper:paper_0166218X_v158_n5_p444_Dickenstein |
---|---|
record_format |
dspace |
spelling |
paper:paper_0166218X_v158_n5_p444_Dickenstein2023-06-08T15:15:29Z Additive edge labelings Dickenstein, Alicia Marcela Tobis, Enrique Augusto Cycles Graph labeling Incidence matrix Kernel Toric ideal Following problem Graph labelings Incidence matrices Labelings Multiplicative version Polynomial algorithm Positive integers Possible solutions Toric ideals Labeling Let G = (V, E) be a graph and d a positive integer. We study the following problem: for which labelings fE : E → Zd is there a labeling fV : V → Zd such that fE (i, j) = fV (i) + fV (j) (mod d), for every edge (i, j) ∈ E? We also explore the connections of the equivalent multiplicative version to toric ideals. We derive a polynomial algorithm to answer these questions and to obtain all possible solutions. © 2009 Elsevier B.V. All rights reserved. Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Tobis, E.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2010 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v158_n5_p444_Dickenstein http://hdl.handle.net/20.500.12110/paper_0166218X_v158_n5_p444_Dickenstein |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Cycles Graph labeling Incidence matrix Kernel Toric ideal Following problem Graph labelings Incidence matrices Labelings Multiplicative version Polynomial algorithm Positive integers Possible solutions Toric ideals Labeling |
spellingShingle |
Cycles Graph labeling Incidence matrix Kernel Toric ideal Following problem Graph labelings Incidence matrices Labelings Multiplicative version Polynomial algorithm Positive integers Possible solutions Toric ideals Labeling Dickenstein, Alicia Marcela Tobis, Enrique Augusto Additive edge labelings |
topic_facet |
Cycles Graph labeling Incidence matrix Kernel Toric ideal Following problem Graph labelings Incidence matrices Labelings Multiplicative version Polynomial algorithm Positive integers Possible solutions Toric ideals Labeling |
description |
Let G = (V, E) be a graph and d a positive integer. We study the following problem: for which labelings fE : E → Zd is there a labeling fV : V → Zd such that fE (i, j) = fV (i) + fV (j) (mod d), for every edge (i, j) ∈ E? We also explore the connections of the equivalent multiplicative version to toric ideals. We derive a polynomial algorithm to answer these questions and to obtain all possible solutions. © 2009 Elsevier B.V. All rights reserved. |
author |
Dickenstein, Alicia Marcela Tobis, Enrique Augusto |
author_facet |
Dickenstein, Alicia Marcela Tobis, Enrique Augusto |
author_sort |
Dickenstein, Alicia Marcela |
title |
Additive edge labelings |
title_short |
Additive edge labelings |
title_full |
Additive edge labelings |
title_fullStr |
Additive edge labelings |
title_full_unstemmed |
Additive edge labelings |
title_sort |
additive edge labelings |
publishDate |
2010 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v158_n5_p444_Dickenstein http://hdl.handle.net/20.500.12110/paper_0166218X_v158_n5_p444_Dickenstein |
work_keys_str_mv |
AT dickensteinaliciamarcela additiveedgelabelings AT tobisenriqueaugusto additiveedgelabelings |
_version_ |
1768545922314141696 |