Additive edge labelings

Let G = (V, E) be a graph and d a positive integer. We study the following problem: for which labelings fE : E → Zd is there a labeling fV : V → Zd such that fE (i, j) = fV (i) + fV (j) (mod d), for every edge (i, j) ∈ E? We also explore the connections of the equivalent multiplicative version to to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dickenstein, Alicia Marcela, Tobis, Enrique Augusto
Publicado: 2010
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v158_n5_p444_Dickenstein
http://hdl.handle.net/20.500.12110/paper_0166218X_v158_n5_p444_Dickenstein
Aporte de:
id paper:paper_0166218X_v158_n5_p444_Dickenstein
record_format dspace
spelling paper:paper_0166218X_v158_n5_p444_Dickenstein2023-06-08T15:15:29Z Additive edge labelings Dickenstein, Alicia Marcela Tobis, Enrique Augusto Cycles Graph labeling Incidence matrix Kernel Toric ideal Following problem Graph labelings Incidence matrices Labelings Multiplicative version Polynomial algorithm Positive integers Possible solutions Toric ideals Labeling Let G = (V, E) be a graph and d a positive integer. We study the following problem: for which labelings fE : E → Zd is there a labeling fV : V → Zd such that fE (i, j) = fV (i) + fV (j) (mod d), for every edge (i, j) ∈ E? We also explore the connections of the equivalent multiplicative version to toric ideals. We derive a polynomial algorithm to answer these questions and to obtain all possible solutions. © 2009 Elsevier B.V. All rights reserved. Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Tobis, E.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2010 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v158_n5_p444_Dickenstein http://hdl.handle.net/20.500.12110/paper_0166218X_v158_n5_p444_Dickenstein
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Cycles
Graph labeling
Incidence matrix
Kernel
Toric ideal
Following problem
Graph labelings
Incidence matrices
Labelings
Multiplicative version
Polynomial algorithm
Positive integers
Possible solutions
Toric ideals
Labeling
spellingShingle Cycles
Graph labeling
Incidence matrix
Kernel
Toric ideal
Following problem
Graph labelings
Incidence matrices
Labelings
Multiplicative version
Polynomial algorithm
Positive integers
Possible solutions
Toric ideals
Labeling
Dickenstein, Alicia Marcela
Tobis, Enrique Augusto
Additive edge labelings
topic_facet Cycles
Graph labeling
Incidence matrix
Kernel
Toric ideal
Following problem
Graph labelings
Incidence matrices
Labelings
Multiplicative version
Polynomial algorithm
Positive integers
Possible solutions
Toric ideals
Labeling
description Let G = (V, E) be a graph and d a positive integer. We study the following problem: for which labelings fE : E → Zd is there a labeling fV : V → Zd such that fE (i, j) = fV (i) + fV (j) (mod d), for every edge (i, j) ∈ E? We also explore the connections of the equivalent multiplicative version to toric ideals. We derive a polynomial algorithm to answer these questions and to obtain all possible solutions. © 2009 Elsevier B.V. All rights reserved.
author Dickenstein, Alicia Marcela
Tobis, Enrique Augusto
author_facet Dickenstein, Alicia Marcela
Tobis, Enrique Augusto
author_sort Dickenstein, Alicia Marcela
title Additive edge labelings
title_short Additive edge labelings
title_full Additive edge labelings
title_fullStr Additive edge labelings
title_full_unstemmed Additive edge labelings
title_sort additive edge labelings
publishDate 2010
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v158_n5_p444_Dickenstein
http://hdl.handle.net/20.500.12110/paper_0166218X_v158_n5_p444_Dickenstein
work_keys_str_mv AT dickensteinaliciamarcela additiveedgelabelings
AT tobisenriqueaugusto additiveedgelabelings
_version_ 1768545922314141696