Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs

A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum cliqu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bonomo, Flavia, Durán, Guillermo A.
Publicado: 2008
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v156_n7_p1058_Bonomo
http://hdl.handle.net/20.500.12110/paper_0166218X_v156_n7_p1058_Bonomo
Aporte de:
id paper:paper_0166218X_v156_n7_p1058_Bonomo
record_format dspace
spelling paper:paper_0166218X_v156_n7_p1058_Bonomo2023-06-08T15:15:27Z Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs Bonomo, Flavia Durán, Guillermo A. Claw-free graphs Clique-perfect graphs Hereditary clique-Helly graphs Line graphs Perfect graphs Image processing Mathematical models Number theory Problem solving Set theory Claw free graphs Clique perfect graphs Hereditary clique-Helly graphs Line graphs Perfect graphs Graph theory A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs. © 2007 Elsevier B.V. All rights reserved. Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2008 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v156_n7_p1058_Bonomo http://hdl.handle.net/20.500.12110/paper_0166218X_v156_n7_p1058_Bonomo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Claw-free graphs
Clique-perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Image processing
Mathematical models
Number theory
Problem solving
Set theory
Claw free graphs
Clique perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Graph theory
spellingShingle Claw-free graphs
Clique-perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Image processing
Mathematical models
Number theory
Problem solving
Set theory
Claw free graphs
Clique perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Graph theory
Bonomo, Flavia
Durán, Guillermo A.
Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
topic_facet Claw-free graphs
Clique-perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Image processing
Mathematical models
Number theory
Problem solving
Set theory
Claw free graphs
Clique perfect graphs
Hereditary clique-Helly graphs
Line graphs
Perfect graphs
Graph theory
description A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The clique-transversal number and clique-independence number of G are the sizes of a minimum clique-transversal and a maximum clique-independent set of G, respectively. A graph G is clique-perfect if these two numbers are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. In this paper, we present a partial result in this direction; that is, we characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs. © 2007 Elsevier B.V. All rights reserved.
author Bonomo, Flavia
Durán, Guillermo A.
author_facet Bonomo, Flavia
Durán, Guillermo A.
author_sort Bonomo, Flavia
title Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
title_short Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
title_full Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
title_fullStr Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
title_full_unstemmed Partial characterizations of clique-perfect graphs I: Subclasses of claw-free graphs
title_sort partial characterizations of clique-perfect graphs i: subclasses of claw-free graphs
publishDate 2008
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0166218X_v156_n7_p1058_Bonomo
http://hdl.handle.net/20.500.12110/paper_0166218X_v156_n7_p1058_Bonomo
work_keys_str_mv AT bonomoflavia partialcharacterizationsofcliqueperfectgraphsisubclassesofclawfreegraphs
AT duranguillermoa partialcharacterizationsofcliqueperfectgraphsisubclassesofclawfreegraphs
_version_ 1768543176156512256