Symmetric interpolation, Exchange Lemma and Sylvester sums

The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 185...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Krick, Teresa Elena Genoveva
Publicado: 2017
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00927872_v45_n8_p3231_Krick
http://hdl.handle.net/20.500.12110/paper_00927872_v45_n8_p3231_Krick
Aporte de:
id paper:paper_00927872_v45_n8_p3231_Krick
record_format dspace
spelling paper:paper_00927872_v45_n8_p3231_Krick2025-07-30T17:48:19Z Symmetric interpolation, Exchange Lemma and Sylvester sums Krick, Teresa Elena Genoveva Subresultants Sylvester double sums symmetric Lagrange interpolation The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients. © 2017 Taylor & Francis. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2017 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00927872_v45_n8_p3231_Krick http://hdl.handle.net/20.500.12110/paper_00927872_v45_n8_p3231_Krick
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Subresultants
Sylvester double sums
symmetric Lagrange interpolation
spellingShingle Subresultants
Sylvester double sums
symmetric Lagrange interpolation
Krick, Teresa Elena Genoveva
Symmetric interpolation, Exchange Lemma and Sylvester sums
topic_facet Subresultants
Sylvester double sums
symmetric Lagrange interpolation
description The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients. © 2017 Taylor & Francis.
author Krick, Teresa Elena Genoveva
author_facet Krick, Teresa Elena Genoveva
author_sort Krick, Teresa Elena Genoveva
title Symmetric interpolation, Exchange Lemma and Sylvester sums
title_short Symmetric interpolation, Exchange Lemma and Sylvester sums
title_full Symmetric interpolation, Exchange Lemma and Sylvester sums
title_fullStr Symmetric interpolation, Exchange Lemma and Sylvester sums
title_full_unstemmed Symmetric interpolation, Exchange Lemma and Sylvester sums
title_sort symmetric interpolation, exchange lemma and sylvester sums
publishDate 2017
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00927872_v45_n8_p3231_Krick
http://hdl.handle.net/20.500.12110/paper_00927872_v45_n8_p3231_Krick
work_keys_str_mv AT krickteresaelenagenoveva symmetricinterpolationexchangelemmaandsylvestersums
_version_ 1840324101984485376