Symmetric interpolation, Exchange Lemma and Sylvester sums
The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 185...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00927872_v45_n8_p3231_Krick http://hdl.handle.net/20.500.12110/paper_00927872_v45_n8_p3231_Krick |
Aporte de: |
id |
paper:paper_00927872_v45_n8_p3231_Krick |
---|---|
record_format |
dspace |
spelling |
paper:paper_00927872_v45_n8_p3231_Krick2025-07-30T17:48:19Z Symmetric interpolation, Exchange Lemma and Sylvester sums Krick, Teresa Elena Genoveva Subresultants Sylvester double sums symmetric Lagrange interpolation The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients. © 2017 Taylor & Francis. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2017 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00927872_v45_n8_p3231_Krick http://hdl.handle.net/20.500.12110/paper_00927872_v45_n8_p3231_Krick |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Subresultants Sylvester double sums symmetric Lagrange interpolation |
spellingShingle |
Subresultants Sylvester double sums symmetric Lagrange interpolation Krick, Teresa Elena Genoveva Symmetric interpolation, Exchange Lemma and Sylvester sums |
topic_facet |
Subresultants Sylvester double sums symmetric Lagrange interpolation |
description |
The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients. © 2017 Taylor & Francis. |
author |
Krick, Teresa Elena Genoveva |
author_facet |
Krick, Teresa Elena Genoveva |
author_sort |
Krick, Teresa Elena Genoveva |
title |
Symmetric interpolation, Exchange Lemma and Sylvester sums |
title_short |
Symmetric interpolation, Exchange Lemma and Sylvester sums |
title_full |
Symmetric interpolation, Exchange Lemma and Sylvester sums |
title_fullStr |
Symmetric interpolation, Exchange Lemma and Sylvester sums |
title_full_unstemmed |
Symmetric interpolation, Exchange Lemma and Sylvester sums |
title_sort |
symmetric interpolation, exchange lemma and sylvester sums |
publishDate |
2017 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00927872_v45_n8_p3231_Krick http://hdl.handle.net/20.500.12110/paper_00927872_v45_n8_p3231_Krick |
work_keys_str_mv |
AT krickteresaelenagenoveva symmetricinterpolationexchangelemmaandsylvestersums |
_version_ |
1840324101984485376 |