The Dirichlet-Bohr radius
Denote by Ω(n) the number of prime divisors of n ∈ ℕ (counted with multiplicities). For x ∈ ℕ define the Dirichlet-Bohr radius L(x) to be the best r > 0 such that for every finite Dirichlet polynomial Σn≤xann-s we have ∑n ≤ x |an| rΩ(n) ≤ supt ∈ ℝ | ∑n ≤ x ann-it|. We prove that the asymptoti...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00651036_v171_n1_p23_Carando http://hdl.handle.net/20.500.12110/paper_00651036_v171_n1_p23_Carando |
Aporte de: |
id |
paper:paper_00651036_v171_n1_p23_Carando |
---|---|
record_format |
dspace |
spelling |
paper:paper_00651036_v171_n1_p23_Carando2023-06-08T15:05:53Z The Dirichlet-Bohr radius Carando, Daniel German Bohr radius Dirichlet series Holomorphic functions Denote by Ω(n) the number of prime divisors of n ∈ ℕ (counted with multiplicities). For x ∈ ℕ define the Dirichlet-Bohr radius L(x) to be the best r > 0 such that for every finite Dirichlet polynomial Σn≤xann-s we have ∑n ≤ x |an| rΩ(n) ≤ supt ∈ ℝ | ∑n ≤ x ann-it|. We prove that the asymptotically correct order of L(x) is (log x)1/4x-1/8. Following Bohr's vision our proof links the estimation of L(x) with classical Bohr radii for holomorphic functions in several variables. Moreover, we suggest a general setting which allows translating various results on Bohr radii in a systematic way into results on Dirichlet-Bohr radii, and vice versa. Copyright © 2007-2014 by IMPAN. All rights reserved. Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2015 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00651036_v171_n1_p23_Carando http://hdl.handle.net/20.500.12110/paper_00651036_v171_n1_p23_Carando |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Bohr radius Dirichlet series Holomorphic functions |
spellingShingle |
Bohr radius Dirichlet series Holomorphic functions Carando, Daniel German The Dirichlet-Bohr radius |
topic_facet |
Bohr radius Dirichlet series Holomorphic functions |
description |
Denote by Ω(n) the number of prime divisors of n ∈ ℕ (counted with multiplicities). For x ∈ ℕ define the Dirichlet-Bohr radius L(x) to be the best r > 0 such that for every finite Dirichlet polynomial Σn≤xann-s we have ∑n ≤ x |an| rΩ(n) ≤ supt ∈ ℝ | ∑n ≤ x ann-it|. We prove that the asymptotically correct order of L(x) is (log x)1/4x-1/8. Following Bohr's vision our proof links the estimation of L(x) with classical Bohr radii for holomorphic functions in several variables. Moreover, we suggest a general setting which allows translating various results on Bohr radii in a systematic way into results on Dirichlet-Bohr radii, and vice versa. Copyright © 2007-2014 by IMPAN. All rights reserved. |
author |
Carando, Daniel German |
author_facet |
Carando, Daniel German |
author_sort |
Carando, Daniel German |
title |
The Dirichlet-Bohr radius |
title_short |
The Dirichlet-Bohr radius |
title_full |
The Dirichlet-Bohr radius |
title_fullStr |
The Dirichlet-Bohr radius |
title_full_unstemmed |
The Dirichlet-Bohr radius |
title_sort |
dirichlet-bohr radius |
publishDate |
2015 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00651036_v171_n1_p23_Carando http://hdl.handle.net/20.500.12110/paper_00651036_v171_n1_p23_Carando |
work_keys_str_mv |
AT carandodanielgerman thedirichletbohrradius AT carandodanielgerman dirichletbohrradius |
_version_ |
1768543460095164416 |