The Dirichlet-Bohr radius
Denote by Ω(n) the number of prime divisors of n ∈ ℕ (counted with multiplicities). For x ∈ ℕ define the Dirichlet-Bohr radius L(x) to be the best r > 0 such that for every finite Dirichlet polynomial Σn≤xann-s we have ∑n ≤ x |an| rΩ(n) ≤ supt ∈ ℝ | ∑n ≤ x ann-it|. We prove that the asymptoti...
Guardado en:
Autor principal: | Carando, Daniel German |
---|---|
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00651036_v171_n1_p23_Carando http://hdl.handle.net/20.500.12110/paper_00651036_v171_n1_p23_Carando |
Aporte de: |
Ejemplares similares
-
The Dirichlet-Bohr radius
por: Carando, D., et al. -
Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces
por: Carando, Daniel German
Publicado: (2014) -
Bohr's absolute convergence problem for Hp-Dirichlet series in banach spaces
por: Carando, D., et al. -
Leçons sur les progrès récents de la théorie des séries de Dirichlet, professées au Collège del France
por: Bernstein, Vladimir 1900-1936
Publicado: (1933) -
A characterization of composition operators on algebras of analytic functions
por: Carando, Daniel German
Publicado: (2008)