Signatures of homoclinic motion in quantum chaos

Homoclinic motion plays a key role in the organization of classical chaos in Hamiltonian systems. In this Letter, we show that it also imprints a clear signature in the corresponding quantum spectra. By numerically studying the fluctuations of the widths of wave functions localized along periodic or...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wisniacki, Diego A., Vergini, Eduardo Germán
Publicado: 2005
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319007_v94_n5_p_Wisniacki
http://hdl.handle.net/20.500.12110/paper_00319007_v94_n5_p_Wisniacki
Aporte de:
id paper:paper_00319007_v94_n5_p_Wisniacki
record_format dspace
spelling paper:paper_00319007_v94_n5_p_Wisniacki2025-07-30T17:39:40Z Signatures of homoclinic motion in quantum chaos Wisniacki, Diego A. Vergini, Eduardo Germán Gutzwiller trace formula Homoclinic motion Periodic orbits (PO) Quantum chaos Eigenvalues and eigenfunctions Hamiltonians Lyapunov methods Probability density function Quantum theory Resonance Chaos theory Homoclinic motion plays a key role in the organization of classical chaos in Hamiltonian systems. In this Letter, we show that it also imprints a clear signature in the corresponding quantum spectra. By numerically studying the fluctuations of the widths of wave functions localized along periodic orbits we reveal the existence of an oscillatory behavior that is explained solely in terms of the primary homoclinic motion. Furthermore, our results indicate that it survives the semiclassical limit. © 2005 The American Physical Society. Fil:Wisniacki, D.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Vergini, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2005 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319007_v94_n5_p_Wisniacki http://hdl.handle.net/20.500.12110/paper_00319007_v94_n5_p_Wisniacki
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Gutzwiller trace formula
Homoclinic motion
Periodic orbits (PO)
Quantum chaos
Eigenvalues and eigenfunctions
Hamiltonians
Lyapunov methods
Probability density function
Quantum theory
Resonance
Chaos theory
spellingShingle Gutzwiller trace formula
Homoclinic motion
Periodic orbits (PO)
Quantum chaos
Eigenvalues and eigenfunctions
Hamiltonians
Lyapunov methods
Probability density function
Quantum theory
Resonance
Chaos theory
Wisniacki, Diego A.
Vergini, Eduardo Germán
Signatures of homoclinic motion in quantum chaos
topic_facet Gutzwiller trace formula
Homoclinic motion
Periodic orbits (PO)
Quantum chaos
Eigenvalues and eigenfunctions
Hamiltonians
Lyapunov methods
Probability density function
Quantum theory
Resonance
Chaos theory
description Homoclinic motion plays a key role in the organization of classical chaos in Hamiltonian systems. In this Letter, we show that it also imprints a clear signature in the corresponding quantum spectra. By numerically studying the fluctuations of the widths of wave functions localized along periodic orbits we reveal the existence of an oscillatory behavior that is explained solely in terms of the primary homoclinic motion. Furthermore, our results indicate that it survives the semiclassical limit. © 2005 The American Physical Society.
author Wisniacki, Diego A.
Vergini, Eduardo Germán
author_facet Wisniacki, Diego A.
Vergini, Eduardo Germán
author_sort Wisniacki, Diego A.
title Signatures of homoclinic motion in quantum chaos
title_short Signatures of homoclinic motion in quantum chaos
title_full Signatures of homoclinic motion in quantum chaos
title_fullStr Signatures of homoclinic motion in quantum chaos
title_full_unstemmed Signatures of homoclinic motion in quantum chaos
title_sort signatures of homoclinic motion in quantum chaos
publishDate 2005
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319007_v94_n5_p_Wisniacki
http://hdl.handle.net/20.500.12110/paper_00319007_v94_n5_p_Wisniacki
work_keys_str_mv AT wisniackidiegoa signaturesofhomoclinicmotioninquantumchaos
AT verginieduardogerman signaturesofhomoclinicmotioninquantumchaos
_version_ 1840321153692860416