Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data

The first direct determination of the inertial range energy cascade rate, using an anisotropic form of Yaglom's law for magnetohydrodynamic turbulence, is obtained in the solar wind with multispacecraft measurements. The two-point mixed third-order structure functions of Elsässer fluctuations a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Dasso, Sergio Ricardo
Publicado: 2011
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319007_v107_n16_p_Osman
http://hdl.handle.net/20.500.12110/paper_00319007_v107_n16_p_Osman
Aporte de:
id paper:paper_00319007_v107_n16_p_Osman
record_format dspace
spelling paper:paper_00319007_v107_n16_p_Osman2023-06-08T14:57:56Z Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data Dasso, Sergio Ricardo Direct determination Energy cascade Linear scaling Low frequency limits Magnetohydrodynamic turbulence Non-adiabatic Solar-wind turbulence Structure functions Third-order Two-point Velocity field Anisotropy Heating Magnetic fields Magnetohydrodynamics Solar wind Spheres Turbulence Velocity Solar energy The first direct determination of the inertial range energy cascade rate, using an anisotropic form of Yaglom's law for magnetohydrodynamic turbulence, is obtained in the solar wind with multispacecraft measurements. The two-point mixed third-order structure functions of Elsässer fluctuations are integrated over a sphere in magnetic field-aligned coordinates, and the result is consistent with a linear scaling. Therefore, volume integrated heating and cascade rates are obtained that, unlike previous studies, make only limited assumptions about the underlying spectral geometry of solar wind turbulence. These results confirm the turbulent nature of magnetic and velocity field fluctuations in the low frequency limit, and could supply the energy necessary to account for the nonadiabatic heating of the solar wind. © 2011 American Physical Society. Fil:Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2011 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319007_v107_n16_p_Osman http://hdl.handle.net/20.500.12110/paper_00319007_v107_n16_p_Osman
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Direct determination
Energy cascade
Linear scaling
Low frequency limits
Magnetohydrodynamic turbulence
Non-adiabatic
Solar-wind turbulence
Structure functions
Third-order
Two-point
Velocity field
Anisotropy
Heating
Magnetic fields
Magnetohydrodynamics
Solar wind
Spheres
Turbulence
Velocity
Solar energy
spellingShingle Direct determination
Energy cascade
Linear scaling
Low frequency limits
Magnetohydrodynamic turbulence
Non-adiabatic
Solar-wind turbulence
Structure functions
Third-order
Two-point
Velocity field
Anisotropy
Heating
Magnetic fields
Magnetohydrodynamics
Solar wind
Spheres
Turbulence
Velocity
Solar energy
Dasso, Sergio Ricardo
Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data
topic_facet Direct determination
Energy cascade
Linear scaling
Low frequency limits
Magnetohydrodynamic turbulence
Non-adiabatic
Solar-wind turbulence
Structure functions
Third-order
Two-point
Velocity field
Anisotropy
Heating
Magnetic fields
Magnetohydrodynamics
Solar wind
Spheres
Turbulence
Velocity
Solar energy
description The first direct determination of the inertial range energy cascade rate, using an anisotropic form of Yaglom's law for magnetohydrodynamic turbulence, is obtained in the solar wind with multispacecraft measurements. The two-point mixed third-order structure functions of Elsässer fluctuations are integrated over a sphere in magnetic field-aligned coordinates, and the result is consistent with a linear scaling. Therefore, volume integrated heating and cascade rates are obtained that, unlike previous studies, make only limited assumptions about the underlying spectral geometry of solar wind turbulence. These results confirm the turbulent nature of magnetic and velocity field fluctuations in the low frequency limit, and could supply the energy necessary to account for the nonadiabatic heating of the solar wind. © 2011 American Physical Society.
author Dasso, Sergio Ricardo
author_facet Dasso, Sergio Ricardo
author_sort Dasso, Sergio Ricardo
title Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data
title_short Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data
title_full Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data
title_fullStr Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data
title_full_unstemmed Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data
title_sort anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data
publishDate 2011
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319007_v107_n16_p_Osman
http://hdl.handle.net/20.500.12110/paper_00319007_v107_n16_p_Osman
work_keys_str_mv AT dassosergioricardo anisotropicthirdmomentestimatesoftheenergycascadeinsolarwindturbulenceusingmultispacecraftdata
_version_ 1768542071649468416