Bistability in Kerr lens mode-locked Ti:sapphire lasers
Femtosecond pulse Ti:sapphire lasers can operate in different ways for the same values of the control parameters. This phenomenon of multistability is explained in a simple way by a theoretical approach using iterative or Poincaré maps. We present experimental confirmation of the predictions of the...
Guardado en:
Publicado: |
2001
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00304018_v192_n3-6_p333_Kovalsky http://hdl.handle.net/20.500.12110/paper_00304018_v192_n3-6_p333_Kovalsky |
Aporte de: |
id |
paper:paper_00304018_v192_n3-6_p333_Kovalsky |
---|---|
record_format |
dspace |
spelling |
paper:paper_00304018_v192_n3-6_p333_Kovalsky2025-07-30T17:37:31Z Bistability in Kerr lens mode-locked Ti:sapphire lasers Bifurcations and chaos Kerr lens mode locking Nonlinear dynamics Self-mode-locked lasers Ti:Sapphire lasers Bifurcation (mathematics) Chaos theory Laser mode locking Laser pulses Nonlinear optics Optical bistability Optical instrument lenses Optical Kerr effect Kerr lens mode locking Solid state lasers Femtosecond pulse Ti:sapphire lasers can operate in different ways for the same values of the control parameters. This phenomenon of multistability is explained in a simple way by a theoretical approach using iterative or Poincaré maps. We present experimental confirmation of the predictions of the approach regarding the slope (of pulse duration vs. group velocity dispersion) and regions of stability of two different regimes of mode locking, i.e. transform-limited and chirped output pulses. © 2001 Elsevier Science B.V. 2001 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00304018_v192_n3-6_p333_Kovalsky http://hdl.handle.net/20.500.12110/paper_00304018_v192_n3-6_p333_Kovalsky |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Bifurcations and chaos Kerr lens mode locking Nonlinear dynamics Self-mode-locked lasers Ti:Sapphire lasers Bifurcation (mathematics) Chaos theory Laser mode locking Laser pulses Nonlinear optics Optical bistability Optical instrument lenses Optical Kerr effect Kerr lens mode locking Solid state lasers |
spellingShingle |
Bifurcations and chaos Kerr lens mode locking Nonlinear dynamics Self-mode-locked lasers Ti:Sapphire lasers Bifurcation (mathematics) Chaos theory Laser mode locking Laser pulses Nonlinear optics Optical bistability Optical instrument lenses Optical Kerr effect Kerr lens mode locking Solid state lasers Bistability in Kerr lens mode-locked Ti:sapphire lasers |
topic_facet |
Bifurcations and chaos Kerr lens mode locking Nonlinear dynamics Self-mode-locked lasers Ti:Sapphire lasers Bifurcation (mathematics) Chaos theory Laser mode locking Laser pulses Nonlinear optics Optical bistability Optical instrument lenses Optical Kerr effect Kerr lens mode locking Solid state lasers |
description |
Femtosecond pulse Ti:sapphire lasers can operate in different ways for the same values of the control parameters. This phenomenon of multistability is explained in a simple way by a theoretical approach using iterative or Poincaré maps. We present experimental confirmation of the predictions of the approach regarding the slope (of pulse duration vs. group velocity dispersion) and regions of stability of two different regimes of mode locking, i.e. transform-limited and chirped output pulses. © 2001 Elsevier Science B.V. |
title |
Bistability in Kerr lens mode-locked Ti:sapphire lasers |
title_short |
Bistability in Kerr lens mode-locked Ti:sapphire lasers |
title_full |
Bistability in Kerr lens mode-locked Ti:sapphire lasers |
title_fullStr |
Bistability in Kerr lens mode-locked Ti:sapphire lasers |
title_full_unstemmed |
Bistability in Kerr lens mode-locked Ti:sapphire lasers |
title_sort |
bistability in kerr lens mode-locked ti:sapphire lasers |
publishDate |
2001 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00304018_v192_n3-6_p333_Kovalsky http://hdl.handle.net/20.500.12110/paper_00304018_v192_n3-6_p333_Kovalsky |
_version_ |
1840326995416711168 |