Bistability in Kerr lens mode-locked Ti:sapphire lasers

Femtosecond pulse Ti:sapphire lasers can operate in different ways for the same values of the control parameters. This phenomenon of multistability is explained in a simple way by a theoretical approach using iterative or Poincaré maps. We present experimental confirmation of the predictions of the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2001
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00304018_v192_n3-6_p333_Kovalsky
http://hdl.handle.net/20.500.12110/paper_00304018_v192_n3-6_p333_Kovalsky
Aporte de:
id paper:paper_00304018_v192_n3-6_p333_Kovalsky
record_format dspace
spelling paper:paper_00304018_v192_n3-6_p333_Kovalsky2025-07-30T17:37:31Z Bistability in Kerr lens mode-locked Ti:sapphire lasers Bifurcations and chaos Kerr lens mode locking Nonlinear dynamics Self-mode-locked lasers Ti:Sapphire lasers Bifurcation (mathematics) Chaos theory Laser mode locking Laser pulses Nonlinear optics Optical bistability Optical instrument lenses Optical Kerr effect Kerr lens mode locking Solid state lasers Femtosecond pulse Ti:sapphire lasers can operate in different ways for the same values of the control parameters. This phenomenon of multistability is explained in a simple way by a theoretical approach using iterative or Poincaré maps. We present experimental confirmation of the predictions of the approach regarding the slope (of pulse duration vs. group velocity dispersion) and regions of stability of two different regimes of mode locking, i.e. transform-limited and chirped output pulses. © 2001 Elsevier Science B.V. 2001 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00304018_v192_n3-6_p333_Kovalsky http://hdl.handle.net/20.500.12110/paper_00304018_v192_n3-6_p333_Kovalsky
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Bifurcations and chaos
Kerr lens mode locking
Nonlinear dynamics
Self-mode-locked lasers
Ti:Sapphire lasers
Bifurcation (mathematics)
Chaos theory
Laser mode locking
Laser pulses
Nonlinear optics
Optical bistability
Optical instrument lenses
Optical Kerr effect
Kerr lens mode locking
Solid state lasers
spellingShingle Bifurcations and chaos
Kerr lens mode locking
Nonlinear dynamics
Self-mode-locked lasers
Ti:Sapphire lasers
Bifurcation (mathematics)
Chaos theory
Laser mode locking
Laser pulses
Nonlinear optics
Optical bistability
Optical instrument lenses
Optical Kerr effect
Kerr lens mode locking
Solid state lasers
Bistability in Kerr lens mode-locked Ti:sapphire lasers
topic_facet Bifurcations and chaos
Kerr lens mode locking
Nonlinear dynamics
Self-mode-locked lasers
Ti:Sapphire lasers
Bifurcation (mathematics)
Chaos theory
Laser mode locking
Laser pulses
Nonlinear optics
Optical bistability
Optical instrument lenses
Optical Kerr effect
Kerr lens mode locking
Solid state lasers
description Femtosecond pulse Ti:sapphire lasers can operate in different ways for the same values of the control parameters. This phenomenon of multistability is explained in a simple way by a theoretical approach using iterative or Poincaré maps. We present experimental confirmation of the predictions of the approach regarding the slope (of pulse duration vs. group velocity dispersion) and regions of stability of two different regimes of mode locking, i.e. transform-limited and chirped output pulses. © 2001 Elsevier Science B.V.
title Bistability in Kerr lens mode-locked Ti:sapphire lasers
title_short Bistability in Kerr lens mode-locked Ti:sapphire lasers
title_full Bistability in Kerr lens mode-locked Ti:sapphire lasers
title_fullStr Bistability in Kerr lens mode-locked Ti:sapphire lasers
title_full_unstemmed Bistability in Kerr lens mode-locked Ti:sapphire lasers
title_sort bistability in kerr lens mode-locked ti:sapphire lasers
publishDate 2001
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00304018_v192_n3-6_p333_Kovalsky
http://hdl.handle.net/20.500.12110/paper_00304018_v192_n3-6_p333_Kovalsky
_version_ 1840326995416711168