Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range

Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general "systems l...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ventura, Alejandra C., Bush, Alan, Chernomoretz, Ariel, Colman Lerner, Alejandro Ariel
Publicado: 2014
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00278424_v111_n37_pE3860_Ventura
http://hdl.handle.net/20.500.12110/paper_00278424_v111_n37_pE3860_Ventura
Aporte de:
id paper:paper_00278424_v111_n37_pE3860_Ventura
record_format dspace
spelling paper:paper_00278424_v111_n37_pE3860_Ventura2023-06-08T14:54:30Z Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range Ventura, Alejandra C. Bush, Alan Chernomoretz, Ariel Colman Lerner, Alejandro Ariel cell surface receptor ligand protein binding biological model cell polarity cytology extracellular space kinetics metabolism Saccharomyces cerevisiae signal transduction time Cell Polarity Extracellular Space Kinetics Ligands Models, Biological Protein Binding Receptors, Cell Surface Saccharomyces cerevisiae Signal Transduction Time Factors Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general "systems level" mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state. This mechanism, preequilibrium sensing and signaling (PRESS), operates in signaling systems inwhich the kinetics of ligand-receptor binding are slower than the downstream signaling steps, and it typically involves transient activation of a downstream step. In the systems where it operates, PRESS expands and shifts the input dynamic range, allowing cells to make different responses to ligand concentrations so high as to be otherwise indistinguishable. Specifically, we show that PRESS applies to the yeast directional polarization in response to pheromone gradients. Consideration of preexisting kinetic data for ligand-receptor interactions suggests that PRESS operates in many cell signaling systems throughout biology. The same mechanism may also operate at other levels in signaling systems in which a slow activation step couples to a faster downstream step. Fil:Ventura, A.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Bush, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Chernomoretz, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Colman-Lerner, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2014 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00278424_v111_n37_pE3860_Ventura http://hdl.handle.net/20.500.12110/paper_00278424_v111_n37_pE3860_Ventura
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic cell surface receptor
ligand
protein binding
biological model
cell polarity
cytology
extracellular space
kinetics
metabolism
Saccharomyces cerevisiae
signal transduction
time
Cell Polarity
Extracellular Space
Kinetics
Ligands
Models, Biological
Protein Binding
Receptors, Cell Surface
Saccharomyces cerevisiae
Signal Transduction
Time Factors
spellingShingle cell surface receptor
ligand
protein binding
biological model
cell polarity
cytology
extracellular space
kinetics
metabolism
Saccharomyces cerevisiae
signal transduction
time
Cell Polarity
Extracellular Space
Kinetics
Ligands
Models, Biological
Protein Binding
Receptors, Cell Surface
Saccharomyces cerevisiae
Signal Transduction
Time Factors
Ventura, Alejandra C.
Bush, Alan
Chernomoretz, Ariel
Colman Lerner, Alejandro Ariel
Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range
topic_facet cell surface receptor
ligand
protein binding
biological model
cell polarity
cytology
extracellular space
kinetics
metabolism
Saccharomyces cerevisiae
signal transduction
time
Cell Polarity
Extracellular Space
Kinetics
Ligands
Models, Biological
Protein Binding
Receptors, Cell Surface
Saccharomyces cerevisiae
Signal Transduction
Time Factors
description Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general "systems level" mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state. This mechanism, preequilibrium sensing and signaling (PRESS), operates in signaling systems inwhich the kinetics of ligand-receptor binding are slower than the downstream signaling steps, and it typically involves transient activation of a downstream step. In the systems where it operates, PRESS expands and shifts the input dynamic range, allowing cells to make different responses to ligand concentrations so high as to be otherwise indistinguishable. Specifically, we show that PRESS applies to the yeast directional polarization in response to pheromone gradients. Consideration of preexisting kinetic data for ligand-receptor interactions suggests that PRESS operates in many cell signaling systems throughout biology. The same mechanism may also operate at other levels in signaling systems in which a slow activation step couples to a faster downstream step.
author Ventura, Alejandra C.
Bush, Alan
Chernomoretz, Ariel
Colman Lerner, Alejandro Ariel
author_facet Ventura, Alejandra C.
Bush, Alan
Chernomoretz, Ariel
Colman Lerner, Alejandro Ariel
author_sort Ventura, Alejandra C.
title Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range
title_short Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range
title_full Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range
title_fullStr Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range
title_full_unstemmed Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range
title_sort utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range
publishDate 2014
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00278424_v111_n37_pE3860_Ventura
http://hdl.handle.net/20.500.12110/paper_00278424_v111_n37_pE3860_Ventura
work_keys_str_mv AT venturaalejandrac utilizationofextracellularinformationbeforeligandreceptorbindingreachesequilibriumexpandsandshiftstheinputdynamicrange
AT bushalan utilizationofextracellularinformationbeforeligandreceptorbindingreachesequilibriumexpandsandshiftstheinputdynamicrange
AT chernomoretzariel utilizationofextracellularinformationbeforeligandreceptorbindingreachesequilibriumexpandsandshiftstheinputdynamicrange
AT colmanlerneralejandroariel utilizationofextracellularinformationbeforeligandreceptorbindingreachesequilibriumexpandsandshiftstheinputdynamicrange
_version_ 1768546710430154752