Isomorphism conjectures with proper coefficients
Let G be a group and F a nonempty family of subgroups of G, closed under conjugation and under subgroups. Also let E be a functor from small Z-linear categories to spectra, and let A be a ring with a G-action. Under mild conditions on E and A one can define an equivariant homology theory HG (-, E (A...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2013
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00224049_v_n_p_Cortinas http://hdl.handle.net/20.500.12110/paper_00224049_v_n_p_Cortinas |
Aporte de: |
id |
paper:paper_00224049_v_n_p_Cortinas |
---|---|
record_format |
dspace |
spelling |
paper:paper_00224049_v_n_p_Cortinas2023-06-08T14:50:47Z Isomorphism conjectures with proper coefficients Cortiñas, Guillermo Horacio Let G be a group and F a nonempty family of subgroups of G, closed under conjugation and under subgroups. Also let E be a functor from small Z-linear categories to spectra, and let A be a ring with a G-action. Under mild conditions on E and A one can define an equivariant homology theory HG (-, E (A)) of G-simplicial sets such that H* G (G / H, E (A)) = E (A ⋊ H). The strong isomorphism conjecture for the quadruple (G, F, E, A) asserts that if X → Y is an equivariant map such that XH → YH is an equivalence for all H ∈ F, thenHG (X, E (A)) → HG (Y, E (A)) is an equivalence. In this paper we introduce an algebraic notion of (G, F)-properness for G-rings, modeled on the analogous notion for G-C*-algebras, and show that the strong (G, F, E, P) isomorphism conjecture for (G, F)-proper P is true in several cases of interest in the algebraic K-theory context. © 2013 Elsevier B.V. All rights reserved. Fil:Cortiñas, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2013 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00224049_v_n_p_Cortinas http://hdl.handle.net/20.500.12110/paper_00224049_v_n_p_Cortinas |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
Let G be a group and F a nonempty family of subgroups of G, closed under conjugation and under subgroups. Also let E be a functor from small Z-linear categories to spectra, and let A be a ring with a G-action. Under mild conditions on E and A one can define an equivariant homology theory HG (-, E (A)) of G-simplicial sets such that H* G (G / H, E (A)) = E (A ⋊ H). The strong isomorphism conjecture for the quadruple (G, F, E, A) asserts that if X → Y is an equivariant map such that XH → YH is an equivalence for all H ∈ F, thenHG (X, E (A)) → HG (Y, E (A)) is an equivalence. In this paper we introduce an algebraic notion of (G, F)-properness for G-rings, modeled on the analogous notion for G-C*-algebras, and show that the strong (G, F, E, P) isomorphism conjecture for (G, F)-proper P is true in several cases of interest in the algebraic K-theory context. © 2013 Elsevier B.V. All rights reserved. |
author |
Cortiñas, Guillermo Horacio |
spellingShingle |
Cortiñas, Guillermo Horacio Isomorphism conjectures with proper coefficients |
author_facet |
Cortiñas, Guillermo Horacio |
author_sort |
Cortiñas, Guillermo Horacio |
title |
Isomorphism conjectures with proper coefficients |
title_short |
Isomorphism conjectures with proper coefficients |
title_full |
Isomorphism conjectures with proper coefficients |
title_fullStr |
Isomorphism conjectures with proper coefficients |
title_full_unstemmed |
Isomorphism conjectures with proper coefficients |
title_sort |
isomorphism conjectures with proper coefficients |
publishDate |
2013 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00224049_v_n_p_Cortinas http://hdl.handle.net/20.500.12110/paper_00224049_v_n_p_Cortinas |
work_keys_str_mv |
AT cortinasguillermohoracio isomorphismconjectureswithpropercoefficients |
_version_ |
1768544855083974656 |