Weighted a priori estimates for the poisson equation

Let Ω be a bounded domain in (ℝn with ∂Ω ∈ C2 and let u be a solution of the classical Poisson problem in Ω; i.e., (Equation Presented) where f ∈ Lω p, (Ω) and ω is a weight in Ap. The main goal of this paper is to prove the following a priori estimate (Equation Presented) and to give some applicati...

Descripción completa

Detalles Bibliográficos
Autor principal: Duran, Ricardo Guillermo
Publicado: 2008
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222518_v57_n7_p3463_Duran
http://hdl.handle.net/20.500.12110/paper_00222518_v57_n7_p3463_Duran
Aporte de:
id paper:paper_00222518_v57_n7_p3463_Duran
record_format dspace
spelling paper:paper_00222518_v57_n7_p3463_Duran2023-06-08T14:48:22Z Weighted a priori estimates for the poisson equation Duran, Ricardo Guillermo Calderón-Zygmund theory Green function Poisson equation Weighted sobolev spaces Let Ω be a bounded domain in (ℝn with ∂Ω ∈ C2 and let u be a solution of the classical Poisson problem in Ω; i.e., (Equation Presented) where f ∈ Lω p, (Ω) and ω is a weight in Ap. The main goal of this paper is to prove the following a priori estimate (Equation Presented) and to give some applications for weights given by powers of the distance to the boundary. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2008 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222518_v57_n7_p3463_Duran http://hdl.handle.net/20.500.12110/paper_00222518_v57_n7_p3463_Duran
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Calderón-Zygmund theory
Green function
Poisson equation
Weighted sobolev spaces
spellingShingle Calderón-Zygmund theory
Green function
Poisson equation
Weighted sobolev spaces
Duran, Ricardo Guillermo
Weighted a priori estimates for the poisson equation
topic_facet Calderón-Zygmund theory
Green function
Poisson equation
Weighted sobolev spaces
description Let Ω be a bounded domain in (ℝn with ∂Ω ∈ C2 and let u be a solution of the classical Poisson problem in Ω; i.e., (Equation Presented) where f ∈ Lω p, (Ω) and ω is a weight in Ap. The main goal of this paper is to prove the following a priori estimate (Equation Presented) and to give some applications for weights given by powers of the distance to the boundary.
author Duran, Ricardo Guillermo
author_facet Duran, Ricardo Guillermo
author_sort Duran, Ricardo Guillermo
title Weighted a priori estimates for the poisson equation
title_short Weighted a priori estimates for the poisson equation
title_full Weighted a priori estimates for the poisson equation
title_fullStr Weighted a priori estimates for the poisson equation
title_full_unstemmed Weighted a priori estimates for the poisson equation
title_sort weighted a priori estimates for the poisson equation
publishDate 2008
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222518_v57_n7_p3463_Duran
http://hdl.handle.net/20.500.12110/paper_00222518_v57_n7_p3463_Duran
work_keys_str_mv AT duranricardoguillermo weightedaprioriestimatesforthepoissonequation
_version_ 1768546240910327808