Weighted a priori estimates for the poisson equation
Let Ω be a bounded domain in (ℝn with ∂Ω ∈ C2 and let u be a solution of the classical Poisson problem in Ω; i.e., (Equation Presented) where f ∈ Lω p, (Ω) and ω is a weight in Ap. The main goal of this paper is to prove the following a priori estimate (Equation Presented) and to give some applicati...
Autor principal: | |
---|---|
Publicado: |
2008
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222518_v57_n7_p3463_Duran http://hdl.handle.net/20.500.12110/paper_00222518_v57_n7_p3463_Duran |
Aporte de: |
id |
paper:paper_00222518_v57_n7_p3463_Duran |
---|---|
record_format |
dspace |
spelling |
paper:paper_00222518_v57_n7_p3463_Duran2023-06-08T14:48:22Z Weighted a priori estimates for the poisson equation Duran, Ricardo Guillermo Calderón-Zygmund theory Green function Poisson equation Weighted sobolev spaces Let Ω be a bounded domain in (ℝn with ∂Ω ∈ C2 and let u be a solution of the classical Poisson problem in Ω; i.e., (Equation Presented) where f ∈ Lω p, (Ω) and ω is a weight in Ap. The main goal of this paper is to prove the following a priori estimate (Equation Presented) and to give some applications for weights given by powers of the distance to the boundary. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2008 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222518_v57_n7_p3463_Duran http://hdl.handle.net/20.500.12110/paper_00222518_v57_n7_p3463_Duran |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Calderón-Zygmund theory Green function Poisson equation Weighted sobolev spaces |
spellingShingle |
Calderón-Zygmund theory Green function Poisson equation Weighted sobolev spaces Duran, Ricardo Guillermo Weighted a priori estimates for the poisson equation |
topic_facet |
Calderón-Zygmund theory Green function Poisson equation Weighted sobolev spaces |
description |
Let Ω be a bounded domain in (ℝn with ∂Ω ∈ C2 and let u be a solution of the classical Poisson problem in Ω; i.e., (Equation Presented) where f ∈ Lω p, (Ω) and ω is a weight in Ap. The main goal of this paper is to prove the following a priori estimate (Equation Presented) and to give some applications for weights given by powers of the distance to the boundary. |
author |
Duran, Ricardo Guillermo |
author_facet |
Duran, Ricardo Guillermo |
author_sort |
Duran, Ricardo Guillermo |
title |
Weighted a priori estimates for the poisson equation |
title_short |
Weighted a priori estimates for the poisson equation |
title_full |
Weighted a priori estimates for the poisson equation |
title_fullStr |
Weighted a priori estimates for the poisson equation |
title_full_unstemmed |
Weighted a priori estimates for the poisson equation |
title_sort |
weighted a priori estimates for the poisson equation |
publishDate |
2008 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00222518_v57_n7_p3463_Duran http://hdl.handle.net/20.500.12110/paper_00222518_v57_n7_p3463_Duran |
work_keys_str_mv |
AT duranricardoguillermo weightedaprioriestimatesforthepoissonequation |
_version_ |
1768546240910327808 |