On frames for Krein spaces
A definition of frames for Krein spaces is proposed, which extends the notion of . J-orthonormal bases of Krein spaces. A . J-frame for a Krein space . (H,[,]) is in particular a frame for . H in the Hilbert space sense. But it is also compatible with the indefinite inner product [. , . ], meaning t...
Publicado: |
2012
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v393_n1_p122_Giribet http://hdl.handle.net/20.500.12110/paper_0022247X_v393_n1_p122_Giribet |
Aporte de: |
id |
paper:paper_0022247X_v393_n1_p122_Giribet |
---|---|
record_format |
dspace |
spelling |
paper:paper_0022247X_v393_n1_p122_Giribet2023-06-08T14:47:56Z On frames for Krein spaces Frames Krein spaces Uniformly J-definite subspaces A definition of frames for Krein spaces is proposed, which extends the notion of . J-orthonormal bases of Krein spaces. A . J-frame for a Krein space . (H,[,]) is in particular a frame for . H in the Hilbert space sense. But it is also compatible with the indefinite inner product [. , . ], meaning that it determines a pair of maximal uniformly . J-definite subspaces, an analogue to the maximal dual pair associated to a . J-orthonormal basis.Also, each . J-frame induces an indefinite reconstruction formula for the vectors in . H, which resembles the one given by a . J-orthonormal basis. © 2012 Elsevier Ltd. 2012 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v393_n1_p122_Giribet http://hdl.handle.net/20.500.12110/paper_0022247X_v393_n1_p122_Giribet |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Frames Krein spaces Uniformly J-definite subspaces |
spellingShingle |
Frames Krein spaces Uniformly J-definite subspaces On frames for Krein spaces |
topic_facet |
Frames Krein spaces Uniformly J-definite subspaces |
description |
A definition of frames for Krein spaces is proposed, which extends the notion of . J-orthonormal bases of Krein spaces. A . J-frame for a Krein space . (H,[,]) is in particular a frame for . H in the Hilbert space sense. But it is also compatible with the indefinite inner product [. , . ], meaning that it determines a pair of maximal uniformly . J-definite subspaces, an analogue to the maximal dual pair associated to a . J-orthonormal basis.Also, each . J-frame induces an indefinite reconstruction formula for the vectors in . H, which resembles the one given by a . J-orthonormal basis. © 2012 Elsevier Ltd. |
title |
On frames for Krein spaces |
title_short |
On frames for Krein spaces |
title_full |
On frames for Krein spaces |
title_fullStr |
On frames for Krein spaces |
title_full_unstemmed |
On frames for Krein spaces |
title_sort |
on frames for krein spaces |
publishDate |
2012 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v393_n1_p122_Giribet http://hdl.handle.net/20.500.12110/paper_0022247X_v393_n1_p122_Giribet |
_version_ |
1768545313779351552 |