On frames for Krein spaces

A definition of frames for Krein spaces is proposed, which extends the notion of . J-orthonormal bases of Krein spaces. A . J-frame for a Krein space . (H,[,]) is in particular a frame for . H in the Hilbert space sense. But it is also compatible with the indefinite inner product [. , . ], meaning t...

Descripción completa

Detalles Bibliográficos
Publicado: 2012
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v393_n1_p122_Giribet
http://hdl.handle.net/20.500.12110/paper_0022247X_v393_n1_p122_Giribet
Aporte de:
id paper:paper_0022247X_v393_n1_p122_Giribet
record_format dspace
spelling paper:paper_0022247X_v393_n1_p122_Giribet2023-06-08T14:47:56Z On frames for Krein spaces Frames Krein spaces Uniformly J-definite subspaces A definition of frames for Krein spaces is proposed, which extends the notion of . J-orthonormal bases of Krein spaces. A . J-frame for a Krein space . (H,[,]) is in particular a frame for . H in the Hilbert space sense. But it is also compatible with the indefinite inner product [. , . ], meaning that it determines a pair of maximal uniformly . J-definite subspaces, an analogue to the maximal dual pair associated to a . J-orthonormal basis.Also, each . J-frame induces an indefinite reconstruction formula for the vectors in . H, which resembles the one given by a . J-orthonormal basis. © 2012 Elsevier Ltd. 2012 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v393_n1_p122_Giribet http://hdl.handle.net/20.500.12110/paper_0022247X_v393_n1_p122_Giribet
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Frames
Krein spaces
Uniformly J-definite subspaces
spellingShingle Frames
Krein spaces
Uniformly J-definite subspaces
On frames for Krein spaces
topic_facet Frames
Krein spaces
Uniformly J-definite subspaces
description A definition of frames for Krein spaces is proposed, which extends the notion of . J-orthonormal bases of Krein spaces. A . J-frame for a Krein space . (H,[,]) is in particular a frame for . H in the Hilbert space sense. But it is also compatible with the indefinite inner product [. , . ], meaning that it determines a pair of maximal uniformly . J-definite subspaces, an analogue to the maximal dual pair associated to a . J-orthonormal basis.Also, each . J-frame induces an indefinite reconstruction formula for the vectors in . H, which resembles the one given by a . J-orthonormal basis. © 2012 Elsevier Ltd.
title On frames for Krein spaces
title_short On frames for Krein spaces
title_full On frames for Krein spaces
title_fullStr On frames for Krein spaces
title_full_unstemmed On frames for Krein spaces
title_sort on frames for krein spaces
publishDate 2012
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v393_n1_p122_Giribet
http://hdl.handle.net/20.500.12110/paper_0022247X_v393_n1_p122_Giribet
_version_ 1768545313779351552