The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞

In this paper we study the behaviour of the solutions to the eigenvalue problem corresponding to the p (x)-Laplacian operator{(- div (| ∇ u |p (x) - 2 ∇ u) = Λp (x) | u |p (x) - 2 u,, in Ω,; u = 0,, on ∂ Ω,) as p (x) → ∞. We consider a sequence of functions pn (x) that goes to infinity uniformly in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rossi, Julio Daniel
Publicado: 2010
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v363_n2_p502_PerezLlanos
http://hdl.handle.net/20.500.12110/paper_0022247X_v363_n2_p502_PerezLlanos
Aporte de:
id paper:paper_0022247X_v363_n2_p502_PerezLlanos
record_format dspace
spelling paper:paper_0022247X_v363_n2_p502_PerezLlanos2023-06-08T14:47:53Z The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞ Rossi, Julio Daniel Eigenvalue problems p (x)-Laplacian ∞-Laplacian In this paper we study the behaviour of the solutions to the eigenvalue problem corresponding to the p (x)-Laplacian operator{(- div (| ∇ u |p (x) - 2 ∇ u) = Λp (x) | u |p (x) - 2 u,, in Ω,; u = 0,, on ∂ Ω,) as p (x) → ∞. We consider a sequence of functions pn (x) that goes to infinity uniformly in over(Ω, -). Under adequate hypotheses on the sequence pn, namely that the limits∇ ln pn (x) → ξ (x), and frac(pn, n) (x) → q (x) exist, we prove that the corresponding eigenvalues Λpn and eigenfunctions upn verify that(Λpn)1 / n → Λ∞, upn → u∞ uniformly in over(Ω, -), where Λ∞, u∞ is a nontrivial viscosity solution of the following problem{(min {- Δ∞ u∞ - | ∇ u∞ |2 log (| ∇ u∞ |) 〈 ξ, ∇ u∞ 〉, | ∇ u∞ |q - Λ∞ u∞ q} = 0, in Ω,; u∞ = 0, on ∂ Ω .). © 2009 Elsevier Inc. All rights reserved. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2010 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v363_n2_p502_PerezLlanos http://hdl.handle.net/20.500.12110/paper_0022247X_v363_n2_p502_PerezLlanos
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Eigenvalue problems
p (x)-Laplacian
∞-Laplacian
spellingShingle Eigenvalue problems
p (x)-Laplacian
∞-Laplacian
Rossi, Julio Daniel
The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞
topic_facet Eigenvalue problems
p (x)-Laplacian
∞-Laplacian
description In this paper we study the behaviour of the solutions to the eigenvalue problem corresponding to the p (x)-Laplacian operator{(- div (| ∇ u |p (x) - 2 ∇ u) = Λp (x) | u |p (x) - 2 u,, in Ω,; u = 0,, on ∂ Ω,) as p (x) → ∞. We consider a sequence of functions pn (x) that goes to infinity uniformly in over(Ω, -). Under adequate hypotheses on the sequence pn, namely that the limits∇ ln pn (x) → ξ (x), and frac(pn, n) (x) → q (x) exist, we prove that the corresponding eigenvalues Λpn and eigenfunctions upn verify that(Λpn)1 / n → Λ∞, upn → u∞ uniformly in over(Ω, -), where Λ∞, u∞ is a nontrivial viscosity solution of the following problem{(min {- Δ∞ u∞ - | ∇ u∞ |2 log (| ∇ u∞ |) 〈 ξ, ∇ u∞ 〉, | ∇ u∞ |q - Λ∞ u∞ q} = 0, in Ω,; u∞ = 0, on ∂ Ω .). © 2009 Elsevier Inc. All rights reserved.
author Rossi, Julio Daniel
author_facet Rossi, Julio Daniel
author_sort Rossi, Julio Daniel
title The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞
title_short The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞
title_full The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞
title_fullStr The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞
title_full_unstemmed The behaviour of the p (x)-Laplacian eigenvalue problem as p (x) → ∞
title_sort behaviour of the p (x)-laplacian eigenvalue problem as p (x) → ∞
publishDate 2010
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v363_n2_p502_PerezLlanos
http://hdl.handle.net/20.500.12110/paper_0022247X_v363_n2_p502_PerezLlanos
work_keys_str_mv AT rossijuliodaniel thebehaviourofthepxlaplacianeigenvalueproblemaspx
AT rossijuliodaniel behaviourofthepxlaplacianeigenvalueproblemaspx
_version_ 1768546616394907648