Geometric significance of Toeplitz kernels
Let L2 be the Lebesgue space of square-integrable functions on the unit circle. We show that the injectivity problem for Toeplitz operators is linked to the existence of geodesics in the Grassmann manifold of L2. We also investigate this connection in the context of restricted Grassmann manifolds as...
Guardado en:
Publicado: |
2018
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221236_v275_n2_p329_Andruchow http://hdl.handle.net/20.500.12110/paper_00221236_v275_n2_p329_Andruchow |
Aporte de: |
Ejemplares similares
-
Geometric significance of Toeplitz kernels
por: Andruchow, E., et al. -
Geometric significance of Toeplitz kernels
por: Andruchow, Esteban, et al.
Publicado: (2024) -
Geometric significance of Toeplitz kernels
por: Andruchow, Esteban, et al.
Publicado: (2018) -
The Toeplitz algebra on the Bergman space coincides with its commutator ideal
Publicado: (2004) -
The Toeplitz algebra on the Bergman space coincides with its commutator ideal
por: Suárez, D.