Geometric significance of Toeplitz kernels

Let L2 be the Lebesgue space of square-integrable functions on the unit circle. We show that the injectivity problem for Toeplitz operators is linked to the existence of geodesics in the Grassmann manifold of L2. We also investigate this connection in the context of restricted Grassmann manifolds as...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2018
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221236_v275_n2_p329_Andruchow
http://hdl.handle.net/20.500.12110/paper_00221236_v275_n2_p329_Andruchow
Aporte de:
id paper:paper_00221236_v275_n2_p329_Andruchow
record_format dspace
spelling paper:paper_00221236_v275_n2_p329_Andruchow2023-06-08T14:46:28Z Geometric significance of Toeplitz kernels Geodesic Sato Grassmannian Schatten ideal Toeplitz operator Let L2 be the Lebesgue space of square-integrable functions on the unit circle. We show that the injectivity problem for Toeplitz operators is linked to the existence of geodesics in the Grassmann manifold of L2. We also investigate this connection in the context of restricted Grassmann manifolds associated to p-Schatten ideals and essentially commuting projections. © 2018 Elsevier Inc. 2018 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221236_v275_n2_p329_Andruchow http://hdl.handle.net/20.500.12110/paper_00221236_v275_n2_p329_Andruchow
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Geodesic
Sato Grassmannian
Schatten ideal
Toeplitz operator
spellingShingle Geodesic
Sato Grassmannian
Schatten ideal
Toeplitz operator
Geometric significance of Toeplitz kernels
topic_facet Geodesic
Sato Grassmannian
Schatten ideal
Toeplitz operator
description Let L2 be the Lebesgue space of square-integrable functions on the unit circle. We show that the injectivity problem for Toeplitz operators is linked to the existence of geodesics in the Grassmann manifold of L2. We also investigate this connection in the context of restricted Grassmann manifolds associated to p-Schatten ideals and essentially commuting projections. © 2018 Elsevier Inc.
title Geometric significance of Toeplitz kernels
title_short Geometric significance of Toeplitz kernels
title_full Geometric significance of Toeplitz kernels
title_fullStr Geometric significance of Toeplitz kernels
title_full_unstemmed Geometric significance of Toeplitz kernels
title_sort geometric significance of toeplitz kernels
publishDate 2018
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221236_v275_n2_p329_Andruchow
http://hdl.handle.net/20.500.12110/paper_00221236_v275_n2_p329_Andruchow
_version_ 1768543215696216064