Geometric significance of Toeplitz kernels
Let L2 be the Lebesgue space of square-integrable functions on the unit circle. We show that the injectivity problem for Toeplitz operators is linked to the existence of geodesics in the Grassmann manifold of L2. We also investigate this connection in the context of restricted Grassmann manifolds as...
Guardado en:
Publicado: |
2018
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221236_v275_n2_p329_Andruchow http://hdl.handle.net/20.500.12110/paper_00221236_v275_n2_p329_Andruchow |
Aporte de: |
id |
paper:paper_00221236_v275_n2_p329_Andruchow |
---|---|
record_format |
dspace |
spelling |
paper:paper_00221236_v275_n2_p329_Andruchow2023-06-08T14:46:28Z Geometric significance of Toeplitz kernels Geodesic Sato Grassmannian Schatten ideal Toeplitz operator Let L2 be the Lebesgue space of square-integrable functions on the unit circle. We show that the injectivity problem for Toeplitz operators is linked to the existence of geodesics in the Grassmann manifold of L2. We also investigate this connection in the context of restricted Grassmann manifolds associated to p-Schatten ideals and essentially commuting projections. © 2018 Elsevier Inc. 2018 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221236_v275_n2_p329_Andruchow http://hdl.handle.net/20.500.12110/paper_00221236_v275_n2_p329_Andruchow |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Geodesic Sato Grassmannian Schatten ideal Toeplitz operator |
spellingShingle |
Geodesic Sato Grassmannian Schatten ideal Toeplitz operator Geometric significance of Toeplitz kernels |
topic_facet |
Geodesic Sato Grassmannian Schatten ideal Toeplitz operator |
description |
Let L2 be the Lebesgue space of square-integrable functions on the unit circle. We show that the injectivity problem for Toeplitz operators is linked to the existence of geodesics in the Grassmann manifold of L2. We also investigate this connection in the context of restricted Grassmann manifolds associated to p-Schatten ideals and essentially commuting projections. © 2018 Elsevier Inc. |
title |
Geometric significance of Toeplitz kernels |
title_short |
Geometric significance of Toeplitz kernels |
title_full |
Geometric significance of Toeplitz kernels |
title_fullStr |
Geometric significance of Toeplitz kernels |
title_full_unstemmed |
Geometric significance of Toeplitz kernels |
title_sort |
geometric significance of toeplitz kernels |
publishDate |
2018 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00221236_v275_n2_p329_Andruchow http://hdl.handle.net/20.500.12110/paper_00221236_v275_n2_p329_Andruchow |
_version_ |
1768543215696216064 |