Optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol
We explore different resistance states of La 0.325Pr 0.300 Ca 0.375 MnO 3- Ti interfaces as prototypes of non-volatile memory devices at room temperature. In addition to high and low resistance states accessible through bipolar pulsing with one pulse, higher resistance states can be obtained by repe...
Guardado en:
Autores principales: | , , |
---|---|
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218979_v111_n8_p_Ghenzi http://hdl.handle.net/20.500.12110/paper_00218979_v111_n8_p_Ghenzi |
Aporte de: |
id |
paper:paper_00218979_v111_n8_p_Ghenzi |
---|---|
record_format |
dspace |
spelling |
paper:paper_00218979_v111_n8_p_Ghenzi2023-06-08T14:42:49Z Optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol Rozenberg, Marcelo Javier Rubi, Diego Levy, Pablo Eduardo High resistance High-resistance state Low-resistance state Model simulation Multipulses Nonvolatile memory devices Oxide interfaces Resistance state Resistance values Resistive switching Room temperature Time constants Computer simulation Interface states Manganese oxide Experiments We explore different resistance states of La 0.325Pr 0.300 Ca 0.375 MnO 3- Ti interfaces as prototypes of non-volatile memory devices at room temperature. In addition to high and low resistance states accessible through bipolar pulsing with one pulse, higher resistance states can be obtained by repeatedly pulsing with a single polarity. The accumulative action of successive pulsing drives the resistance towards saturation, the time constant being a strong function of the pulsing amplitude. The experiments reveal that the pulsing amplitude and the number of applied pulses necessary to reach a target high resistance value appear to be in an exponential relationship, with a rate that results independent of the resistance value. Model simulations confirm these results and provide the oxygen vacancy profiles associated to the high resistance states obtained in the experiments. © 2012 American Institute of Physics. Fil:Rozenberg, M.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rubi, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Levy, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2012 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218979_v111_n8_p_Ghenzi http://hdl.handle.net/20.500.12110/paper_00218979_v111_n8_p_Ghenzi |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
High resistance High-resistance state Low-resistance state Model simulation Multipulses Nonvolatile memory devices Oxide interfaces Resistance state Resistance values Resistive switching Room temperature Time constants Computer simulation Interface states Manganese oxide Experiments |
spellingShingle |
High resistance High-resistance state Low-resistance state Model simulation Multipulses Nonvolatile memory devices Oxide interfaces Resistance state Resistance values Resistive switching Room temperature Time constants Computer simulation Interface states Manganese oxide Experiments Rozenberg, Marcelo Javier Rubi, Diego Levy, Pablo Eduardo Optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol |
topic_facet |
High resistance High-resistance state Low-resistance state Model simulation Multipulses Nonvolatile memory devices Oxide interfaces Resistance state Resistance values Resistive switching Room temperature Time constants Computer simulation Interface states Manganese oxide Experiments |
description |
We explore different resistance states of La 0.325Pr 0.300 Ca 0.375 MnO 3- Ti interfaces as prototypes of non-volatile memory devices at room temperature. In addition to high and low resistance states accessible through bipolar pulsing with one pulse, higher resistance states can be obtained by repeatedly pulsing with a single polarity. The accumulative action of successive pulsing drives the resistance towards saturation, the time constant being a strong function of the pulsing amplitude. The experiments reveal that the pulsing amplitude and the number of applied pulses necessary to reach a target high resistance value appear to be in an exponential relationship, with a rate that results independent of the resistance value. Model simulations confirm these results and provide the oxygen vacancy profiles associated to the high resistance states obtained in the experiments. © 2012 American Institute of Physics. |
author |
Rozenberg, Marcelo Javier Rubi, Diego Levy, Pablo Eduardo |
author_facet |
Rozenberg, Marcelo Javier Rubi, Diego Levy, Pablo Eduardo |
author_sort |
Rozenberg, Marcelo Javier |
title |
Optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol |
title_short |
Optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol |
title_full |
Optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol |
title_fullStr |
Optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol |
title_full_unstemmed |
Optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol |
title_sort |
optimization of resistive switching performance of metal-manganite oxide interfaces by a multipulse protocol |
publishDate |
2012 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218979_v111_n8_p_Ghenzi http://hdl.handle.net/20.500.12110/paper_00218979_v111_n8_p_Ghenzi |
work_keys_str_mv |
AT rozenbergmarcelojavier optimizationofresistiveswitchingperformanceofmetalmanganiteoxideinterfacesbyamultipulseprotocol AT rubidiego optimizationofresistiveswitchingperformanceofmetalmanganiteoxideinterfacesbyamultipulseprotocol AT levypabloeduardo optimizationofresistiveswitchingperformanceofmetalmanganiteoxideinterfacesbyamultipulseprotocol |
_version_ |
1768543545787940864 |