Extendibility of bilinear forms on banach sequence spaces
We study Hahn-Banach extensions of multilinear forms defined on Banach sequence spaces. We characterize c0 in terms of extension of bilinear forms, and describe the Banach sequence spaces in which every bilinear form admits extensions to any superspace. © 2014, Hebrew University Magnes Press.
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2014
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00212172_v199_n2_p941_Carando http://hdl.handle.net/20.500.12110/paper_00212172_v199_n2_p941_Carando |
Aporte de: |
id |
paper:paper_00212172_v199_n2_p941_Carando |
---|---|
record_format |
dspace |
spelling |
paper:paper_00212172_v199_n2_p941_Carando2023-06-08T14:42:03Z Extendibility of bilinear forms on banach sequence spaces Carando, Daniel German We study Hahn-Banach extensions of multilinear forms defined on Banach sequence spaces. We characterize c0 in terms of extension of bilinear forms, and describe the Banach sequence spaces in which every bilinear form admits extensions to any superspace. © 2014, Hebrew University Magnes Press. Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2014 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00212172_v199_n2_p941_Carando http://hdl.handle.net/20.500.12110/paper_00212172_v199_n2_p941_Carando |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We study Hahn-Banach extensions of multilinear forms defined on Banach sequence spaces. We characterize c0 in terms of extension of bilinear forms, and describe the Banach sequence spaces in which every bilinear form admits extensions to any superspace. © 2014, Hebrew University Magnes Press. |
author |
Carando, Daniel German |
spellingShingle |
Carando, Daniel German Extendibility of bilinear forms on banach sequence spaces |
author_facet |
Carando, Daniel German |
author_sort |
Carando, Daniel German |
title |
Extendibility of bilinear forms on banach sequence spaces |
title_short |
Extendibility of bilinear forms on banach sequence spaces |
title_full |
Extendibility of bilinear forms on banach sequence spaces |
title_fullStr |
Extendibility of bilinear forms on banach sequence spaces |
title_full_unstemmed |
Extendibility of bilinear forms on banach sequence spaces |
title_sort |
extendibility of bilinear forms on banach sequence spaces |
publishDate |
2014 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00212172_v199_n2_p941_Carando http://hdl.handle.net/20.500.12110/paper_00212172_v199_n2_p941_Carando |
work_keys_str_mv |
AT carandodanielgerman extendibilityofbilinearformsonbanachsequencespaces |
_version_ |
1768542675568427008 |