Imprints of a primordial magnetic field upon the cosmic microwave background anisotropy and polarization

We review the imprints that a primordial magnetic field may have left upon the cosmic microwave background (CMB) anisotropy and polarization through Faraday rotation around the time of decoupling. Differential Faraday rotation reduces the degree of linear polarization acquired through anisotropic Th...

Descripción completa

Detalles Bibliográficos
Autor principal: Harari, Diego Darío
Publicado: 1997
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00207748_v36_n11_p2513_Harari
http://hdl.handle.net/20.500.12110/paper_00207748_v36_n11_p2513_Harari
Aporte de:
id paper:paper_00207748_v36_n11_p2513_Harari
record_format dspace
spelling paper:paper_00207748_v36_n11_p2513_Harari2023-06-08T14:41:49Z Imprints of a primordial magnetic field upon the cosmic microwave background anisotropy and polarization Harari, Diego Darío We review the imprints that a primordial magnetic field may have left upon the cosmic microwave background (CMB) anisotropy and polarization through Faraday rotation around the time of decoupling. Differential Faraday rotation reduces the degree of linear polarization acquired through anisotropic Thomson scattering. Depolarization reduces the damping due to photon diffusion, which results in an increase of the anisotropy on small angular scales. The effect is significant at frequencies around and below 10 GHz · √B0/10-9 G where B0 is the present strength of the primordial magnetic field. Fil:Harari, D.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1997 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00207748_v36_n11_p2513_Harari http://hdl.handle.net/20.500.12110/paper_00207748_v36_n11_p2513_Harari
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We review the imprints that a primordial magnetic field may have left upon the cosmic microwave background (CMB) anisotropy and polarization through Faraday rotation around the time of decoupling. Differential Faraday rotation reduces the degree of linear polarization acquired through anisotropic Thomson scattering. Depolarization reduces the damping due to photon diffusion, which results in an increase of the anisotropy on small angular scales. The effect is significant at frequencies around and below 10 GHz · √B0/10-9 G where B0 is the present strength of the primordial magnetic field.
author Harari, Diego Darío
spellingShingle Harari, Diego Darío
Imprints of a primordial magnetic field upon the cosmic microwave background anisotropy and polarization
author_facet Harari, Diego Darío
author_sort Harari, Diego Darío
title Imprints of a primordial magnetic field upon the cosmic microwave background anisotropy and polarization
title_short Imprints of a primordial magnetic field upon the cosmic microwave background anisotropy and polarization
title_full Imprints of a primordial magnetic field upon the cosmic microwave background anisotropy and polarization
title_fullStr Imprints of a primordial magnetic field upon the cosmic microwave background anisotropy and polarization
title_full_unstemmed Imprints of a primordial magnetic field upon the cosmic microwave background anisotropy and polarization
title_sort imprints of a primordial magnetic field upon the cosmic microwave background anisotropy and polarization
publishDate 1997
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00207748_v36_n11_p2513_Harari
http://hdl.handle.net/20.500.12110/paper_00207748_v36_n11_p2513_Harari
work_keys_str_mv AT hararidiegodario imprintsofaprimordialmagneticfielduponthecosmicmicrowavebackgroundanisotropyandpolarization
_version_ 1768542924072550400