Computational methods for Generalized Sturmians basis
The computational techniques needed to generate a two-body Generalized Sturmian basis are described. These basis are obtained as a solution of the Schrödinger equation, with two-point boundary conditions. This equation includes two central potentials: A general auxiliary potential and a short-range...
Autores principales: | , , |
---|---|
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00104655_v182_n5_p1145_Mitnik http://hdl.handle.net/20.500.12110/paper_00104655_v182_n5_p1145_Mitnik |
Aporte de: |
id |
paper:paper_00104655_v182_n5_p1145_Mitnik |
---|---|
record_format |
dspace |
spelling |
paper:paper_00104655_v182_n5_p1145_Mitnik2023-06-08T14:34:24Z Computational methods for Generalized Sturmians basis Mitnik, Dario Marcelo Colavecchia, Flavio D. Gasaneo, Gustavo Atomic spectra Continuum spectra Generalized Sturmian functions Asymptotic behaviors Atomic spectra Central potentials Computational linear algebra Computational routines Computational technique Computational time Continuum spectra Dinger equation Eigenvalues Finite difference Fixed parameters Generalized eigenvalues Generalized Sturmian functions Generalized Sturmians Inner region Matrix systems Single processors Sturmian Two-point Eigenvalues and eigenfunctions Atomic spectroscopy The computational techniques needed to generate a two-body Generalized Sturmian basis are described. These basis are obtained as a solution of the Schrödinger equation, with two-point boundary conditions. This equation includes two central potentials: A general auxiliary potential and a short-range generating potential. The auxiliary potential is, in general, long-range and it determines the asymptotic behavior of all the basis elements. The short-range generating potential rules the dynamics of the inner region. The energy is considered a fixed parameter, while the eigenvalues are the generalized charges. Although the finite differences scheme leads to a generalized eigenvalue matrix system, it cannot be solved by standard computational linear algebra packages. Therefore, we developed computational routines to calculate the basis with high accuracy and low computational time. The precise charge eigenvalues with more than 12 significant figures along with the corresponding wave functions can be computed on a single processor within seconds. © 2011 Elsevier B.V. All rights reserved. Fil:Mitnik, D.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Colavecchia, F.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Gasaneo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2011 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00104655_v182_n5_p1145_Mitnik http://hdl.handle.net/20.500.12110/paper_00104655_v182_n5_p1145_Mitnik |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Atomic spectra Continuum spectra Generalized Sturmian functions Asymptotic behaviors Atomic spectra Central potentials Computational linear algebra Computational routines Computational technique Computational time Continuum spectra Dinger equation Eigenvalues Finite difference Fixed parameters Generalized eigenvalues Generalized Sturmian functions Generalized Sturmians Inner region Matrix systems Single processors Sturmian Two-point Eigenvalues and eigenfunctions Atomic spectroscopy |
spellingShingle |
Atomic spectra Continuum spectra Generalized Sturmian functions Asymptotic behaviors Atomic spectra Central potentials Computational linear algebra Computational routines Computational technique Computational time Continuum spectra Dinger equation Eigenvalues Finite difference Fixed parameters Generalized eigenvalues Generalized Sturmian functions Generalized Sturmians Inner region Matrix systems Single processors Sturmian Two-point Eigenvalues and eigenfunctions Atomic spectroscopy Mitnik, Dario Marcelo Colavecchia, Flavio D. Gasaneo, Gustavo Computational methods for Generalized Sturmians basis |
topic_facet |
Atomic spectra Continuum spectra Generalized Sturmian functions Asymptotic behaviors Atomic spectra Central potentials Computational linear algebra Computational routines Computational technique Computational time Continuum spectra Dinger equation Eigenvalues Finite difference Fixed parameters Generalized eigenvalues Generalized Sturmian functions Generalized Sturmians Inner region Matrix systems Single processors Sturmian Two-point Eigenvalues and eigenfunctions Atomic spectroscopy |
description |
The computational techniques needed to generate a two-body Generalized Sturmian basis are described. These basis are obtained as a solution of the Schrödinger equation, with two-point boundary conditions. This equation includes two central potentials: A general auxiliary potential and a short-range generating potential. The auxiliary potential is, in general, long-range and it determines the asymptotic behavior of all the basis elements. The short-range generating potential rules the dynamics of the inner region. The energy is considered a fixed parameter, while the eigenvalues are the generalized charges. Although the finite differences scheme leads to a generalized eigenvalue matrix system, it cannot be solved by standard computational linear algebra packages. Therefore, we developed computational routines to calculate the basis with high accuracy and low computational time. The precise charge eigenvalues with more than 12 significant figures along with the corresponding wave functions can be computed on a single processor within seconds. © 2011 Elsevier B.V. All rights reserved. |
author |
Mitnik, Dario Marcelo Colavecchia, Flavio D. Gasaneo, Gustavo |
author_facet |
Mitnik, Dario Marcelo Colavecchia, Flavio D. Gasaneo, Gustavo |
author_sort |
Mitnik, Dario Marcelo |
title |
Computational methods for Generalized Sturmians basis |
title_short |
Computational methods for Generalized Sturmians basis |
title_full |
Computational methods for Generalized Sturmians basis |
title_fullStr |
Computational methods for Generalized Sturmians basis |
title_full_unstemmed |
Computational methods for Generalized Sturmians basis |
title_sort |
computational methods for generalized sturmians basis |
publishDate |
2011 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00104655_v182_n5_p1145_Mitnik http://hdl.handle.net/20.500.12110/paper_00104655_v182_n5_p1145_Mitnik |
work_keys_str_mv |
AT mitnikdariomarcelo computationalmethodsforgeneralizedsturmiansbasis AT colavecchiaflaviod computationalmethodsforgeneralizedsturmiansbasis AT gasaneogustavo computationalmethodsforgeneralizedsturmiansbasis |
_version_ |
1768545584139993088 |