A method to deconvolve stellar rotational velocities

Aims. Rotational speed is an important physical parameter of stars, and knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. However, rotational speed cannot be measured directly and is instead the convolution between the rotational speed and th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rial, Diego Fernando
Publicado: 2014
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00046361_v565_n_p_Cure
http://hdl.handle.net/20.500.12110/paper_00046361_v565_n_p_Cure
Aporte de:
id paper:paper_00046361_v565_n_p_Cure
record_format dspace
spelling paper:paper_00046361_v565_n_p_Cure2023-06-08T14:28:07Z A method to deconvolve stellar rotational velocities Rial, Diego Fernando Methods:analytical Methods:data analysis Methods:numerical Methods:statistical Stars:fundamental parameters Stars:rotation Inverse problems Numerical methods Stars Velocity Velocity distribution Methods: numericals Methods:analytical Methods:data analysis Methods:statistical Stars:fundamental parameters Stars:rotation Maximum entropy methods Aims. Rotational speed is an important physical parameter of stars, and knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. However, rotational speed cannot be measured directly and is instead the convolution between the rotational speed and the sine of the inclination angle v sin i. Methods. We developed a method to deconvolve this inverse problem and obtain the cumulative distribution function for stellar rotational velocities extending the work of Chandrasekhar & Münch (1950, ApJ, 111, 142) Results. This method is applied: a) to theoretical synthetic data recovering the original velocity distribution with a very small error; and b) to a sample of about 12.000 field main-sequence stars, corroborating that the velocity distribution function is non-Maxwellian, but is better described by distributions based on the concept of maximum entropy, such as Tsallis or Kaniadakis distribution functions. Conclusions. This is a very robust and novel method that deconvolves the rotational velocity cumulative distribution function from a sample of v sin i data in a single step without needing any convergence criteria. © ESO, 2014. Fil:Rial, D.F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2014 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00046361_v565_n_p_Cure http://hdl.handle.net/20.500.12110/paper_00046361_v565_n_p_Cure
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Methods:analytical
Methods:data analysis
Methods:numerical
Methods:statistical
Stars:fundamental parameters
Stars:rotation
Inverse problems
Numerical methods
Stars
Velocity
Velocity distribution
Methods: numericals
Methods:analytical
Methods:data analysis
Methods:statistical
Stars:fundamental parameters
Stars:rotation
Maximum entropy methods
spellingShingle Methods:analytical
Methods:data analysis
Methods:numerical
Methods:statistical
Stars:fundamental parameters
Stars:rotation
Inverse problems
Numerical methods
Stars
Velocity
Velocity distribution
Methods: numericals
Methods:analytical
Methods:data analysis
Methods:statistical
Stars:fundamental parameters
Stars:rotation
Maximum entropy methods
Rial, Diego Fernando
A method to deconvolve stellar rotational velocities
topic_facet Methods:analytical
Methods:data analysis
Methods:numerical
Methods:statistical
Stars:fundamental parameters
Stars:rotation
Inverse problems
Numerical methods
Stars
Velocity
Velocity distribution
Methods: numericals
Methods:analytical
Methods:data analysis
Methods:statistical
Stars:fundamental parameters
Stars:rotation
Maximum entropy methods
description Aims. Rotational speed is an important physical parameter of stars, and knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. However, rotational speed cannot be measured directly and is instead the convolution between the rotational speed and the sine of the inclination angle v sin i. Methods. We developed a method to deconvolve this inverse problem and obtain the cumulative distribution function for stellar rotational velocities extending the work of Chandrasekhar & Münch (1950, ApJ, 111, 142) Results. This method is applied: a) to theoretical synthetic data recovering the original velocity distribution with a very small error; and b) to a sample of about 12.000 field main-sequence stars, corroborating that the velocity distribution function is non-Maxwellian, but is better described by distributions based on the concept of maximum entropy, such as Tsallis or Kaniadakis distribution functions. Conclusions. This is a very robust and novel method that deconvolves the rotational velocity cumulative distribution function from a sample of v sin i data in a single step without needing any convergence criteria. © ESO, 2014.
author Rial, Diego Fernando
author_facet Rial, Diego Fernando
author_sort Rial, Diego Fernando
title A method to deconvolve stellar rotational velocities
title_short A method to deconvolve stellar rotational velocities
title_full A method to deconvolve stellar rotational velocities
title_fullStr A method to deconvolve stellar rotational velocities
title_full_unstemmed A method to deconvolve stellar rotational velocities
title_sort method to deconvolve stellar rotational velocities
publishDate 2014
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00046361_v565_n_p_Cure
http://hdl.handle.net/20.500.12110/paper_00046361_v565_n_p_Cure
work_keys_str_mv AT rialdiegofernando amethodtodeconvolvestellarrotationalvelocities
AT rialdiegofernando methodtodeconvolvestellarrotationalvelocities
_version_ 1768544575619596288