Dimension functions of Cantor sets

We estimate the packing measure of Cantor sets associated to nonincreasing sequences through their decay. This result, dual to one obtained by Besicovitch and Taylor, allows us to characterize the dimension functions recently found by Cabrelli et al for these sets. © 2007 American Mathematical Socie...

Descripción completa

Detalles Bibliográficos
Autor principal: Molter, Ursula Maria
Publicado: 2007
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v135_n10_p3151_Garcia
http://hdl.handle.net/20.500.12110/paper_00029939_v135_n10_p3151_Garcia
Aporte de:
id paper:paper_00029939_v135_n10_p3151_Garcia
record_format dspace
spelling paper:paper_00029939_v135_n10_p3151_Garcia2023-06-08T14:23:28Z Dimension functions of Cantor sets Molter, Ursula Maria Cantor sets Dimension function Hausdorff dimension Packing measure We estimate the packing measure of Cantor sets associated to nonincreasing sequences through their decay. This result, dual to one obtained by Besicovitch and Taylor, allows us to characterize the dimension functions recently found by Cabrelli et al for these sets. © 2007 American Mathematical Society. Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2007 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v135_n10_p3151_Garcia http://hdl.handle.net/20.500.12110/paper_00029939_v135_n10_p3151_Garcia
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Cantor sets
Dimension function
Hausdorff dimension
Packing measure
spellingShingle Cantor sets
Dimension function
Hausdorff dimension
Packing measure
Molter, Ursula Maria
Dimension functions of Cantor sets
topic_facet Cantor sets
Dimension function
Hausdorff dimension
Packing measure
description We estimate the packing measure of Cantor sets associated to nonincreasing sequences through their decay. This result, dual to one obtained by Besicovitch and Taylor, allows us to characterize the dimension functions recently found by Cabrelli et al for these sets. © 2007 American Mathematical Society.
author Molter, Ursula Maria
author_facet Molter, Ursula Maria
author_sort Molter, Ursula Maria
title Dimension functions of Cantor sets
title_short Dimension functions of Cantor sets
title_full Dimension functions of Cantor sets
title_fullStr Dimension functions of Cantor sets
title_full_unstemmed Dimension functions of Cantor sets
title_sort dimension functions of cantor sets
publishDate 2007
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v135_n10_p3151_Garcia
http://hdl.handle.net/20.500.12110/paper_00029939_v135_n10_p3151_Garcia
work_keys_str_mv AT molterursulamaria dimensionfunctionsofcantorsets
_version_ 1768544481331642368