Dimension functions of Cantor sets
We estimate the packing measure of Cantor sets associated to nonincreasing sequences through their decay. This result, dual to one obtained by Besicovitch and Taylor, allows us to characterize the dimension functions recently found by Cabrelli et al for these sets. © 2007 American Mathematical Socie...
Autor principal: | |
---|---|
Publicado: |
2007
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v135_n10_p3151_Garcia http://hdl.handle.net/20.500.12110/paper_00029939_v135_n10_p3151_Garcia |
Aporte de: |
id |
paper:paper_00029939_v135_n10_p3151_Garcia |
---|---|
record_format |
dspace |
spelling |
paper:paper_00029939_v135_n10_p3151_Garcia2023-06-08T14:23:28Z Dimension functions of Cantor sets Molter, Ursula Maria Cantor sets Dimension function Hausdorff dimension Packing measure We estimate the packing measure of Cantor sets associated to nonincreasing sequences through their decay. This result, dual to one obtained by Besicovitch and Taylor, allows us to characterize the dimension functions recently found by Cabrelli et al for these sets. © 2007 American Mathematical Society. Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2007 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v135_n10_p3151_Garcia http://hdl.handle.net/20.500.12110/paper_00029939_v135_n10_p3151_Garcia |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Cantor sets Dimension function Hausdorff dimension Packing measure |
spellingShingle |
Cantor sets Dimension function Hausdorff dimension Packing measure Molter, Ursula Maria Dimension functions of Cantor sets |
topic_facet |
Cantor sets Dimension function Hausdorff dimension Packing measure |
description |
We estimate the packing measure of Cantor sets associated to nonincreasing sequences through their decay. This result, dual to one obtained by Besicovitch and Taylor, allows us to characterize the dimension functions recently found by Cabrelli et al for these sets. © 2007 American Mathematical Society. |
author |
Molter, Ursula Maria |
author_facet |
Molter, Ursula Maria |
author_sort |
Molter, Ursula Maria |
title |
Dimension functions of Cantor sets |
title_short |
Dimension functions of Cantor sets |
title_full |
Dimension functions of Cantor sets |
title_fullStr |
Dimension functions of Cantor sets |
title_full_unstemmed |
Dimension functions of Cantor sets |
title_sort |
dimension functions of cantor sets |
publishDate |
2007 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029939_v135_n10_p3151_Garcia http://hdl.handle.net/20.500.12110/paper_00029939_v135_n10_p3151_Garcia |
work_keys_str_mv |
AT molterursulamaria dimensionfunctionsofcantorsets |
_version_ |
1768544481331642368 |