The fixed point property in every weak homotopy type

We prove that for any connected compact CW-complex K there exists a space X weak homotopy equivalent to K which has the fixed point property, that is, every continuous map X → X has a fixed point. The result is known to be false if we require X to be a polyhedron. The space X we construct is a non-H...

Descripción completa

Detalles Bibliográficos
Autor principal: Barmak, Jonathan A.
Publicado: 2016
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029327_v138_n5_p1425_Barmak
http://hdl.handle.net/20.500.12110/paper_00029327_v138_n5_p1425_Barmak
Aporte de:
id paper:paper_00029327_v138_n5_p1425_Barmak
record_format dspace
spelling paper:paper_00029327_v138_n5_p1425_Barmak2023-06-08T14:23:07Z The fixed point property in every weak homotopy type Barmak, Jonathan A. We prove that for any connected compact CW-complex K there exists a space X weak homotopy equivalent to K which has the fixed point property, that is, every continuous map X → X has a fixed point. The result is known to be false if we require X to be a polyhedron. The space X we construct is a non-Hausdorff space with finitely many points. © 2016 by Johns Hopkins University Press. Fil:Barmak, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2016 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029327_v138_n5_p1425_Barmak http://hdl.handle.net/20.500.12110/paper_00029327_v138_n5_p1425_Barmak
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We prove that for any connected compact CW-complex K there exists a space X weak homotopy equivalent to K which has the fixed point property, that is, every continuous map X → X has a fixed point. The result is known to be false if we require X to be a polyhedron. The space X we construct is a non-Hausdorff space with finitely many points. © 2016 by Johns Hopkins University Press.
author Barmak, Jonathan A.
spellingShingle Barmak, Jonathan A.
The fixed point property in every weak homotopy type
author_facet Barmak, Jonathan A.
author_sort Barmak, Jonathan A.
title The fixed point property in every weak homotopy type
title_short The fixed point property in every weak homotopy type
title_full The fixed point property in every weak homotopy type
title_fullStr The fixed point property in every weak homotopy type
title_full_unstemmed The fixed point property in every weak homotopy type
title_sort fixed point property in every weak homotopy type
publishDate 2016
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029327_v138_n5_p1425_Barmak
http://hdl.handle.net/20.500.12110/paper_00029327_v138_n5_p1425_Barmak
work_keys_str_mv AT barmakjonathana thefixedpointpropertyineveryweakhomotopytype
AT barmakjonathana fixedpointpropertyineveryweakhomotopytype
_version_ 1768544709708349440