On the Laplace transforms of retarded, Lorentz-invariant functions

Let ø(t) (t ∈ Rn) be a retarded, Lorentz-invariant function which satisfies, in addition, condition (c). We call "R" the family of such functions. Let f(z) be the Laplace transform of ø(t) ∈ R. We prove (Theorem 1) that f(z) can be expressed as a K-transform (formula (I, 2; 1)). We apply t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Trione, Susana Elena
Publicado: 1979
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v31_n1_p51_Dominguez
http://hdl.handle.net/20.500.12110/paper_00018708_v31_n1_p51_Dominguez
Aporte de:
id paper:paper_00018708_v31_n1_p51_Dominguez
record_format dspace
spelling paper:paper_00018708_v31_n1_p51_Dominguez2023-06-08T14:21:50Z On the Laplace transforms of retarded, Lorentz-invariant functions Trione, Susana Elena Let ø(t) (t ∈ Rn) be a retarded, Lorentz-invariant function which satisfies, in addition, condition (c). We call "R" the family of such functions. Let f(z) be the Laplace transform of ø(t) ∈ R. We prove (Theorem 1) that f(z) can be expressed as a K-transform (formula (I, 2; 1)). We apply this formula to evaluate several Laplace transforms. We show that it affords simple proofs of important known results. Formula (I, 2; 1) is an effective complement to L. Schwartz' method of evaluating Fourier transforms via Laplace transforms ("Théorie des distributions," p. 264, Hermann, Paris, 1966). We think this is the most useful application of our formula. © 1979. Fil:Trione, S.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1979 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v31_n1_p51_Dominguez http://hdl.handle.net/20.500.12110/paper_00018708_v31_n1_p51_Dominguez
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description Let ø(t) (t ∈ Rn) be a retarded, Lorentz-invariant function which satisfies, in addition, condition (c). We call "R" the family of such functions. Let f(z) be the Laplace transform of ø(t) ∈ R. We prove (Theorem 1) that f(z) can be expressed as a K-transform (formula (I, 2; 1)). We apply this formula to evaluate several Laplace transforms. We show that it affords simple proofs of important known results. Formula (I, 2; 1) is an effective complement to L. Schwartz' method of evaluating Fourier transforms via Laplace transforms ("Théorie des distributions," p. 264, Hermann, Paris, 1966). We think this is the most useful application of our formula. © 1979.
author Trione, Susana Elena
spellingShingle Trione, Susana Elena
On the Laplace transforms of retarded, Lorentz-invariant functions
author_facet Trione, Susana Elena
author_sort Trione, Susana Elena
title On the Laplace transforms of retarded, Lorentz-invariant functions
title_short On the Laplace transforms of retarded, Lorentz-invariant functions
title_full On the Laplace transforms of retarded, Lorentz-invariant functions
title_fullStr On the Laplace transforms of retarded, Lorentz-invariant functions
title_full_unstemmed On the Laplace transforms of retarded, Lorentz-invariant functions
title_sort on the laplace transforms of retarded, lorentz-invariant functions
publishDate 1979
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v31_n1_p51_Dominguez
http://hdl.handle.net/20.500.12110/paper_00018708_v31_n1_p51_Dominguez
work_keys_str_mv AT trionesusanaelena onthelaplacetransformsofretardedlorentzinvariantfunctions
_version_ 1768544527356788736