Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for...
Guardado en:
Autores principales: | , , |
---|---|
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v232_n1_p98_Cabrelli http://hdl.handle.net/20.500.12110/paper_00018708_v232_n1_p98_Cabrelli |
Aporte de: |
id |
paper:paper_00018708_v232_n1_p98_Cabrelli |
---|---|
record_format |
dspace |
spelling |
paper:paper_00018708_v232_n1_p98_Cabrelli2023-06-08T14:21:48Z Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces Cabrelli, Carlos Alberto Molter, Ursula Maria Romero, José Luis Affine systems Anisotropic function spaces Besov spaces Non-uniform atomic decomposition Triebel-Lizorkin spaces In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for an arbitrary expansive matrix A and any set Λ-satisfying a certain spreadness condition but otherwise irregular-there exists a smooth window whose translations along the elements of Λ and dilations by powers of A provide an atomic decomposition for the whole range of the anisotropic Triebel-Lizorkin spaces. The generating window can be either chosen to be bandlimited or to have compact support.To derive these results we start with a known general "painless" construction that has recently appeared in the literature. We show that this construction extends to Besov and Triebel-Lizorkin spaces by providing adequate dual systems. © 2012 Elsevier Ltd. Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Romero, J.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2013 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v232_n1_p98_Cabrelli http://hdl.handle.net/20.500.12110/paper_00018708_v232_n1_p98_Cabrelli |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Affine systems Anisotropic function spaces Besov spaces Non-uniform atomic decomposition Triebel-Lizorkin spaces |
spellingShingle |
Affine systems Anisotropic function spaces Besov spaces Non-uniform atomic decomposition Triebel-Lizorkin spaces Cabrelli, Carlos Alberto Molter, Ursula Maria Romero, José Luis Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
topic_facet |
Affine systems Anisotropic function spaces Besov spaces Non-uniform atomic decomposition Triebel-Lizorkin spaces |
description |
In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd), 1 < p < + ∞. The novelty and difficulty of this construction is that we allow for non-lattice translations.We prove that for an arbitrary expansive matrix A and any set Λ-satisfying a certain spreadness condition but otherwise irregular-there exists a smooth window whose translations along the elements of Λ and dilations by powers of A provide an atomic decomposition for the whole range of the anisotropic Triebel-Lizorkin spaces. The generating window can be either chosen to be bandlimited or to have compact support.To derive these results we start with a known general "painless" construction that has recently appeared in the literature. We show that this construction extends to Besov and Triebel-Lizorkin spaces by providing adequate dual systems. © 2012 Elsevier Ltd. |
author |
Cabrelli, Carlos Alberto Molter, Ursula Maria Romero, José Luis |
author_facet |
Cabrelli, Carlos Alberto Molter, Ursula Maria Romero, José Luis |
author_sort |
Cabrelli, Carlos Alberto |
title |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
title_short |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
title_full |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
title_fullStr |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
title_full_unstemmed |
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces |
title_sort |
non-uniform painless decompositions for anisotropic besov and triebel-lizorkin spaces |
publishDate |
2013 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00018708_v232_n1_p98_Cabrelli http://hdl.handle.net/20.500.12110/paper_00018708_v232_n1_p98_Cabrelli |
work_keys_str_mv |
AT cabrellicarlosalberto nonuniformpainlessdecompositionsforanisotropicbesovandtriebellizorkinspaces AT molterursulamaria nonuniformpainlessdecompositionsforanisotropicbesovandtriebellizorkinspaces AT romerojoseluis nonuniformpainlessdecompositionsforanisotropicbesovandtriebellizorkinspaces |
_version_ |
1768545073403789312 |