Scalar concomitants of a metric and a curvature form

In an Einstein-Yang-Mills field theory the field equations can be obtained by applying a variational principle to a Langrangian minimally coupled to a Lagrangian concomitant of a curvature form and the metric tensor. As a step in the discussion of the uniqueness of these equations, we find the gener...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Noriega, Ricardo José, Prélat, Daniel, Schifini, Claudio Gabriel
Publicado: 1988
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00017701_v20_n4_p337_Noriega
http://hdl.handle.net/20.500.12110/paper_00017701_v20_n4_p337_Noriega
Aporte de:
id paper:paper_00017701_v20_n4_p337_Noriega
record_format dspace
spelling paper:paper_00017701_v20_n4_p337_Noriega2023-06-08T14:21:30Z Scalar concomitants of a metric and a curvature form Noriega, Ricardo José Prélat, Daniel Schifini, Claudio Gabriel In an Einstein-Yang-Mills field theory the field equations can be obtained by applying a variational principle to a Langrangian minimally coupled to a Lagrangian concomitant of a curvature form and the metric tensor. As a step in the discussion of the uniqueness of these equations, we find the general form of such a Lagrangian. © 1988 Plenum Publishing Corporation. Fil:Noriega, R.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Prélat, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Schifini, C.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1988 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00017701_v20_n4_p337_Noriega http://hdl.handle.net/20.500.12110/paper_00017701_v20_n4_p337_Noriega
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description In an Einstein-Yang-Mills field theory the field equations can be obtained by applying a variational principle to a Langrangian minimally coupled to a Lagrangian concomitant of a curvature form and the metric tensor. As a step in the discussion of the uniqueness of these equations, we find the general form of such a Lagrangian. © 1988 Plenum Publishing Corporation.
author Noriega, Ricardo José
Prélat, Daniel
Schifini, Claudio Gabriel
spellingShingle Noriega, Ricardo José
Prélat, Daniel
Schifini, Claudio Gabriel
Scalar concomitants of a metric and a curvature form
author_facet Noriega, Ricardo José
Prélat, Daniel
Schifini, Claudio Gabriel
author_sort Noriega, Ricardo José
title Scalar concomitants of a metric and a curvature form
title_short Scalar concomitants of a metric and a curvature form
title_full Scalar concomitants of a metric and a curvature form
title_fullStr Scalar concomitants of a metric and a curvature form
title_full_unstemmed Scalar concomitants of a metric and a curvature form
title_sort scalar concomitants of a metric and a curvature form
publishDate 1988
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00017701_v20_n4_p337_Noriega
http://hdl.handle.net/20.500.12110/paper_00017701_v20_n4_p337_Noriega
work_keys_str_mv AT noriegaricardojose scalarconcomitantsofametricandacurvatureform
AT prelatdaniel scalarconcomitantsofametricandacurvatureform
AT schifiniclaudiogabriel scalarconcomitantsofametricandacurvatureform
_version_ 1768544156761718784