Scalar concomitants of a metric and a curvature form
In an Einstein-Yang-Mills field theory the field equations can be obtained by applying a variational principle to a Langrangian minimally coupled to a Lagrangian concomitant of a curvature form and the metric tensor. As a step in the discussion of the uniqueness of these equations, we find the gener...
Guardado en:
Autores principales: | , , |
---|---|
Publicado: |
1988
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00017701_v20_n4_p337_Noriega http://hdl.handle.net/20.500.12110/paper_00017701_v20_n4_p337_Noriega |
Aporte de: |
id |
paper:paper_00017701_v20_n4_p337_Noriega |
---|---|
record_format |
dspace |
spelling |
paper:paper_00017701_v20_n4_p337_Noriega2023-06-08T14:21:30Z Scalar concomitants of a metric and a curvature form Noriega, Ricardo José Prélat, Daniel Schifini, Claudio Gabriel In an Einstein-Yang-Mills field theory the field equations can be obtained by applying a variational principle to a Langrangian minimally coupled to a Lagrangian concomitant of a curvature form and the metric tensor. As a step in the discussion of the uniqueness of these equations, we find the general form of such a Lagrangian. © 1988 Plenum Publishing Corporation. Fil:Noriega, R.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Prélat, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Schifini, C.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1988 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00017701_v20_n4_p337_Noriega http://hdl.handle.net/20.500.12110/paper_00017701_v20_n4_p337_Noriega |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
In an Einstein-Yang-Mills field theory the field equations can be obtained by applying a variational principle to a Langrangian minimally coupled to a Lagrangian concomitant of a curvature form and the metric tensor. As a step in the discussion of the uniqueness of these equations, we find the general form of such a Lagrangian. © 1988 Plenum Publishing Corporation. |
author |
Noriega, Ricardo José Prélat, Daniel Schifini, Claudio Gabriel |
spellingShingle |
Noriega, Ricardo José Prélat, Daniel Schifini, Claudio Gabriel Scalar concomitants of a metric and a curvature form |
author_facet |
Noriega, Ricardo José Prélat, Daniel Schifini, Claudio Gabriel |
author_sort |
Noriega, Ricardo José |
title |
Scalar concomitants of a metric and a curvature form |
title_short |
Scalar concomitants of a metric and a curvature form |
title_full |
Scalar concomitants of a metric and a curvature form |
title_fullStr |
Scalar concomitants of a metric and a curvature form |
title_full_unstemmed |
Scalar concomitants of a metric and a curvature form |
title_sort |
scalar concomitants of a metric and a curvature form |
publishDate |
1988 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00017701_v20_n4_p337_Noriega http://hdl.handle.net/20.500.12110/paper_00017701_v20_n4_p337_Noriega |
work_keys_str_mv |
AT noriegaricardojose scalarconcomitantsofametricandacurvatureform AT prelatdaniel scalarconcomitantsofametricandacurvatureform AT schifiniclaudiogabriel scalarconcomitantsofametricandacurvatureform |
_version_ |
1768544156761718784 |