Burbujas oscilantes que se elevan en una celda doblemente confinada

The motion of bubbles rising in confined geometries has gained interest due to its applications in mixing and mass transfer processes, ranging from bubble column reactors in the chemical industry to solar photobioreactors for algae cultivation. In this work we performed an experimental investigation...

Descripción completa

Detalles Bibliográficos
Autores principales: Pavlov, Lucas Alejo, D’Angelo, María Verónica, Cachile, Mario Andrés, Roig, Veronique, Ern, Patricia
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: Asociación Física Argentina 2022
Materias:
Acceso en línea:https://hdl.handle.net/20.500.12110/afa_v33_nespecial_p066
Aporte de:
id afa:afa_v33_nespecial_p066
record_format dspace
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
language Inglés
orig_language_str_mv eng
topic BUBBLES
BUBBLE KINEMATICS
BUBBLE SHAPE
CONFINED BUBBLES
spellingShingle BUBBLES
BUBBLE KINEMATICS
BUBBLE SHAPE
CONFINED BUBBLES
Pavlov, Lucas Alejo
D’Angelo, María Verónica
Cachile, Mario Andrés
Roig, Veronique
Ern, Patricia
Burbujas oscilantes que se elevan en una celda doblemente confinada
topic_facet BUBBLES
BUBBLE KINEMATICS
BUBBLE SHAPE
CONFINED BUBBLES
description The motion of bubbles rising in confined geometries has gained interest due to its applications in mixing and mass transfer processes, ranging from bubble column reactors in the chemical industry to solar photobioreactors for algae cultivation. In this work we performed an experimental investigation of the behavior of air bubbles freely rising at high Reynolds numbers in a planar thin-gap cell of thickness h=2.8 mm filled with distilled water. The in-plane width of the cell Wis varied from 2.4 cm to 21 cm. We focus on the influence of lateral confinement on the motion of bubbles in the regimes with regular path and shape oscillations of large amplitude, that occur for the size range 0.6 cm<d<1.2cm. In addition, a rise regime that consists of a vertical rise path with regular shape oscillations, that does not appear in the laterally unconfined case, is uncovered.In the presence of lateral walls, the mean rise velocity of the bubble Vb becomes lower than the velocity of a laterally unconfined bubble of the same size beyond a critical bubble diameter dcV that decreases as the confinement increases (i.e. as W decreases). The influence of the lateral confinement on the bubble mean shape can be determined from the change in the mean aspect ratio χ of the ellipse that best fits the bubble contour at each instant. It is observed that bubbles become closer to circular (χ closer to 1) as the confinement increases. The departure from the values of χ of the laterally unconfined case occur at a critical diameter dcχ that is lower for greater confinement and also greater than dcV for each confinement, thus indicating that the effect of the lateral confinement is seen earlier (i.e. on smaller bubbles) on the velocity than on the aspect ratio.Assuming that the wall effect is related to the strength of the downward flow generated by the bubble, we introduce the mean flow velocity in the space let free for the liquid between the walls and the bubble,Uƒ, that can be estimated by mass conservation as Uƒ=dVb/ (W − d). We further introduce the relative velocity between the bubble and the down ward fluid in its vicinity Uᵣₑ˪= Vb+Uƒ = Vb/ξ, where ξ=1−d/W is the confinement ratio of the bubble. We found that, for a given bubble size in the oscillatory regime, Uᵣₑ˪ is approximately constant for all the studied values of W, and matches closely the value in the absence of lateral confinement. This provides an estimation, at leading order, of the bubble velocity that generalizes the expression proposed by Filella et al. (JFM, 2015) and accounts for the additional drag experienced by the bubble due to the lateral walls. We then show that, for given d and ξ, the frequency and amplitudes of the oscillatory motion can be predicted using the characteristic length and velocity scales d and Uᵣₑ˪
format Artículo
Artículo
publishedVersion
author Pavlov, Lucas Alejo
D’Angelo, María Verónica
Cachile, Mario Andrés
Roig, Veronique
Ern, Patricia
author_facet Pavlov, Lucas Alejo
D’Angelo, María Verónica
Cachile, Mario Andrés
Roig, Veronique
Ern, Patricia
author_sort Pavlov, Lucas Alejo
title Burbujas oscilantes que se elevan en una celda doblemente confinada
title_short Burbujas oscilantes que se elevan en una celda doblemente confinada
title_full Burbujas oscilantes que se elevan en una celda doblemente confinada
title_fullStr Burbujas oscilantes que se elevan en una celda doblemente confinada
title_full_unstemmed Burbujas oscilantes que se elevan en una celda doblemente confinada
title_sort burbujas oscilantes que se elevan en una celda doblemente confinada
publisher Asociación Física Argentina
publishDate 2022
url https://hdl.handle.net/20.500.12110/afa_v33_nespecial_p066
work_keys_str_mv AT pavlovlucasalejo burbujasoscilantesqueseelevanenunaceldadoblementeconfinada
AT dangelomariaveronica burbujasoscilantesqueseelevanenunaceldadoblementeconfinada
AT cachilemarioandres burbujasoscilantesqueseelevanenunaceldadoblementeconfinada
AT roigveronique burbujasoscilantesqueseelevanenunaceldadoblementeconfinada
AT ernpatricia burbujasoscilantesqueseelevanenunaceldadoblementeconfinada
AT pavlovlucasalejo oscillatingbubblesrisinginadoublyconfinedcell
AT dangelomariaveronica oscillatingbubblesrisinginadoublyconfinedcell
AT cachilemarioandres oscillatingbubblesrisinginadoublyconfinedcell
AT roigveronique oscillatingbubblesrisinginadoublyconfinedcell
AT ernpatricia oscillatingbubblesrisinginadoublyconfinedcell
_version_ 1831980551737704448
spelling afa:afa_v33_nespecial_p0662025-03-11T11:36:24Z Burbujas oscilantes que se elevan en una celda doblemente confinada Oscillating bubbles rising in a doubly confined cell An. (Asoc. Fís. Argent., En línea) 2022;especial(33):66-70 Pavlov, Lucas Alejo D’Angelo, María Verónica Cachile, Mario Andrés Roig, Veronique Ern, Patricia BUBBLES BUBBLE KINEMATICS BUBBLE SHAPE CONFINED BUBBLES The motion of bubbles rising in confined geometries has gained interest due to its applications in mixing and mass transfer processes, ranging from bubble column reactors in the chemical industry to solar photobioreactors for algae cultivation. In this work we performed an experimental investigation of the behavior of air bubbles freely rising at high Reynolds numbers in a planar thin-gap cell of thickness h=2.8 mm filled with distilled water. The in-plane width of the cell Wis varied from 2.4 cm to 21 cm. We focus on the influence of lateral confinement on the motion of bubbles in the regimes with regular path and shape oscillations of large amplitude, that occur for the size range 0.6 cm<d<1.2cm. In addition, a rise regime that consists of a vertical rise path with regular shape oscillations, that does not appear in the laterally unconfined case, is uncovered.In the presence of lateral walls, the mean rise velocity of the bubble Vb becomes lower than the velocity of a laterally unconfined bubble of the same size beyond a critical bubble diameter dcV that decreases as the confinement increases (i.e. as W decreases). The influence of the lateral confinement on the bubble mean shape can be determined from the change in the mean aspect ratio χ of the ellipse that best fits the bubble contour at each instant. It is observed that bubbles become closer to circular (χ closer to 1) as the confinement increases. The departure from the values of χ of the laterally unconfined case occur at a critical diameter dcχ that is lower for greater confinement and also greater than dcV for each confinement, thus indicating that the effect of the lateral confinement is seen earlier (i.e. on smaller bubbles) on the velocity than on the aspect ratio.Assuming that the wall effect is related to the strength of the downward flow generated by the bubble, we introduce the mean flow velocity in the space let free for the liquid between the walls and the bubble,Uƒ, that can be estimated by mass conservation as Uƒ=dVb/ (W − d). We further introduce the relative velocity between the bubble and the down ward fluid in its vicinity Uᵣₑ˪= Vb+Uƒ = Vb/ξ, where ξ=1−d/W is the confinement ratio of the bubble. We found that, for a given bubble size in the oscillatory regime, Uᵣₑ˪ is approximately constant for all the studied values of W, and matches closely the value in the absence of lateral confinement. This provides an estimation, at leading order, of the bubble velocity that generalizes the expression proposed by Filella et al. (JFM, 2015) and accounts for the additional drag experienced by the bubble due to the lateral walls. We then show that, for given d and ξ, the frequency and amplitudes of the oscillatory motion can be predicted using the characteristic length and velocity scales d and Uᵣₑ˪ Fil: Pavlov, Lucas Alejo. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. Argentina Fil: D’Angelo, María Verónica. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. Argentina Fil: Cachile, Mario Andrés. Universidad de Buenos Aires. Facultad de Ingeniería. Grupo de Medios Porosos (UBA-FI). Buenos Aires. Argentina Fil: Roig, Veronique. Université de Toulouse. Institut de Mécanique des Fluides de Toulouse. Toulouse. Francia Fil: Ern, Patricia. Université de Toulouse. Institut de Mécanique des Fluides de Toulouse. Toulouse. Francia Asociación Física Argentina 2022 info:ar-repo/semantics/artículo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar https://hdl.handle.net/20.500.12110/afa_v33_nespecial_p066