Market failures and equilibria in Banach lattices : new tangent and normal cones

In this paper, we consider an economy with infinitely many commodities and market failures such as increasing returns to scale and external effects or other regarding preferences. The commodity space is a Banach lattice possibly without interior points in the positive cone in order to include most o...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonnisseau, Jean-Marc, Fuentes, Matías Nicolás.
Formato: acceptedVersion Artículo
Lenguaje:Inglés
Publicado: ScienceDirect 2019
Materias:
Acceso en línea:http://ri.unsam.edu.ar/handle/123456789/2616
Aporte de:
id I78-R216-123456789-2616
record_format dspace
spelling I78-R216-123456789-26162025-04-25T19:54:42Z Market failures and equilibria in Banach lattices : new tangent and normal cones Bonnisseau, Jean-Marc Fuentes, Matías Nicolás. ECONOMIC EQUILIBRIUM COMMODITIES COMMODITIES PRICES MARKETS info:eu-repo/semantics/acceptedVersion In this paper, we consider an economy with infinitely many commodities and market failures such as increasing returns to scale and external effects or other regarding preferences. The commodity space is a Banach lattice possibly without interior points in the positive cone in order to include most of the relevant commodity spaces in economics. We propose a new definition of the marginal pricing rule through a new tangent cone to the production set at a point of its (non-smooth) boundary. The major contribution is the unification of many previous works with convex or non-convex production sets, smooth or non-smooth, for the competitive equilibria and for the marginal pricing equilibria, with or without external effects, in finite-dimensional spaces as well as in infinite-dimensional spaces. In order to prove the existence of a marginal pricing equilibria, we also provide a suitable properness condition on nonconvex technologies to deal with the emptiness of the interior of the positive cone. Fil.: Fuentes, Matías Nicolás. Universidad Nacional de San Martín. Centro de Investigación en Economía Teórica y Matemática Aplicada (CIETyMA) ; San Martín, Buenos Aires, Argentina Fil: Bonnisseau, Jean-Marc. Universidad Paris 1 Panthéon-Sorbonne ; Paris, Francia. 2019-09-30 info:eu-repo/semantics/article info:ar-repo/semantics/artículo Bonnisseau, J. M. y Fuentes, M. N. (2020). Market failures and equilibria in Banach lattices : new tangent and normal cones. J Optim Theory Appl 184, 338–367. https://doi.org/10.1007/s10957-019-01593-w 1573-2878 EEYN_CIETYMA_2019_1573-2878_184_338-367 http://ri.unsam.edu.ar/handle/123456789/2616 eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5) application/pdf pp. 338-367. application/pdf ScienceDirect
institution Universidad Nacional de General San Martín
institution_str I-78
repository_str R-216
collection Repositorio Institucional de la UNSAM
language Inglés
topic ECONOMIC EQUILIBRIUM
COMMODITIES
COMMODITIES PRICES
MARKETS
spellingShingle ECONOMIC EQUILIBRIUM
COMMODITIES
COMMODITIES PRICES
MARKETS
Bonnisseau, Jean-Marc
Fuentes, Matías Nicolás.
Market failures and equilibria in Banach lattices : new tangent and normal cones
topic_facet ECONOMIC EQUILIBRIUM
COMMODITIES
COMMODITIES PRICES
MARKETS
description In this paper, we consider an economy with infinitely many commodities and market failures such as increasing returns to scale and external effects or other regarding preferences. The commodity space is a Banach lattice possibly without interior points in the positive cone in order to include most of the relevant commodity spaces in economics. We propose a new definition of the marginal pricing rule through a new tangent cone to the production set at a point of its (non-smooth) boundary. The major contribution is the unification of many previous works with convex or non-convex production sets, smooth or non-smooth, for the competitive equilibria and for the marginal pricing equilibria, with or without external effects, in finite-dimensional spaces as well as in infinite-dimensional spaces. In order to prove the existence of a marginal pricing equilibria, we also provide a suitable properness condition on nonconvex technologies to deal with the emptiness of the interior of the positive cone.
format acceptedVersion
Artículo
Artículo
author Bonnisseau, Jean-Marc
Fuentes, Matías Nicolás.
author_facet Bonnisseau, Jean-Marc
Fuentes, Matías Nicolás.
author_sort Bonnisseau, Jean-Marc
title Market failures and equilibria in Banach lattices : new tangent and normal cones
title_short Market failures and equilibria in Banach lattices : new tangent and normal cones
title_full Market failures and equilibria in Banach lattices : new tangent and normal cones
title_fullStr Market failures and equilibria in Banach lattices : new tangent and normal cones
title_full_unstemmed Market failures and equilibria in Banach lattices : new tangent and normal cones
title_sort market failures and equilibria in banach lattices : new tangent and normal cones
publisher ScienceDirect
publishDate 2019
url http://ri.unsam.edu.ar/handle/123456789/2616
work_keys_str_mv AT bonnisseaujeanmarc marketfailuresandequilibriainbanachlatticesnewtangentandnormalcones
AT fuentesmatiasnicolas marketfailuresandequilibriainbanachlatticesnewtangentandnormalcones
_version_ 1832342738459164672