ESS-IM applied to Forest Fire Spread Prediction: parameters Tuning for a Heterogeneous Configuration
Forest fires are a critical natural hazard in many regions of the World. For this reason, the prediction of this kind of phenomenon is considered a very important task that involves a high degree of complexity and precision. The ability to predict the forest fire behaviour constitutes an important to...
Autores principales: | , , , |
---|---|
Formato: | Artículo acceptedVersion |
Lenguaje: | Español |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12272/8036 |
Aporte de: |
id |
I68-R174-20.500.12272-8036 |
---|---|
record_format |
dspace |
spelling |
I68-R174-20.500.12272-80362023-06-12T14:00:25Z ESS-IM applied to Forest Fire Spread Prediction: parameters Tuning for a Heterogeneous Configuration Méndez Garabetti, Miguel Bianchini, Germán Caymes Scutari, Paola Tardivo, M Forest fire, Spread prediction, Parallel evolutionary algorithms, Parameters tuning, High performance, Computing Forest fires are a critical natural hazard in many regions of the World. For this reason, the prediction of this kind of phenomenon is considered a very important task that involves a high degree of complexity and precision. The ability to predict the forest fire behaviour constitutes an important tool for managers, helping to improve the effectiveness of fire prevention, detection and firefighting resources allocation. For this reason, prediction methods should be configured to operate as efficiently as possible. In this paper, a calibration study of EvolutionaryStatistical System with Island Model’s evolutionary parameters is presented (ESS-IM). ESS-IM is a general-parallel uncertainty reduction method applied to the forest fires spread prediction. Index Terms—forest fire spread prediction, parallel evolutionary algorithms, parameters tuning, high performance computing. Universidad Tecnológica Nacional. Facultad Regional Mendoza; Argentina Peer Reviewed 2023-06-12T14:00:25Z 2023-06-12T14:00:25Z 2016-10-14 info:eu-repo/semantics/article acceptedVersion http://hdl.handle.net/20.500.12272/8036 10.1109/SCCC.2016.7836007 spa PID3939 openAccess http://creativecommons.org/publicdomain/zero/1.0/ CC0 1.0 Universal Universidad Tecnológica Nacional. Facultad Regional Mendoza Atribución pdf |
institution |
Universidad Tecnológica Nacional |
institution_str |
I-68 |
repository_str |
R-174 |
collection |
RIA - Repositorio Institucional Abierto (UTN) |
language |
Español |
topic |
Forest fire, Spread prediction, Parallel evolutionary algorithms, Parameters tuning, High performance, Computing |
spellingShingle |
Forest fire, Spread prediction, Parallel evolutionary algorithms, Parameters tuning, High performance, Computing Méndez Garabetti, Miguel Bianchini, Germán Caymes Scutari, Paola Tardivo, M ESS-IM applied to Forest Fire Spread Prediction: parameters Tuning for a Heterogeneous Configuration |
topic_facet |
Forest fire, Spread prediction, Parallel evolutionary algorithms, Parameters tuning, High performance, Computing |
description |
Forest fires are a critical natural hazard in many regions of the World. For this reason, the prediction of this kind of phenomenon is considered a very important task that
involves a high degree of complexity and precision. The ability to predict the forest fire behaviour constitutes an important tool for managers, helping to improve the effectiveness of fire prevention, detection and firefighting resources allocation. For this reason, prediction methods should be configured to operate as efficiently as possible. In this paper, a calibration study of EvolutionaryStatistical System with Island Model’s evolutionary parameters is presented (ESS-IM). ESS-IM is a general-parallel uncertainty
reduction method applied to the forest fires spread prediction. Index Terms—forest fire spread prediction, parallel evolutionary algorithms, parameters tuning, high performance computing. |
format |
Artículo acceptedVersion |
author |
Méndez Garabetti, Miguel Bianchini, Germán Caymes Scutari, Paola Tardivo, M |
author_facet |
Méndez Garabetti, Miguel Bianchini, Germán Caymes Scutari, Paola Tardivo, M |
author_sort |
Méndez Garabetti, Miguel |
title |
ESS-IM applied to Forest Fire Spread Prediction: parameters Tuning for a Heterogeneous Configuration |
title_short |
ESS-IM applied to Forest Fire Spread Prediction: parameters Tuning for a Heterogeneous Configuration |
title_full |
ESS-IM applied to Forest Fire Spread Prediction: parameters Tuning for a Heterogeneous Configuration |
title_fullStr |
ESS-IM applied to Forest Fire Spread Prediction: parameters Tuning for a Heterogeneous Configuration |
title_full_unstemmed |
ESS-IM applied to Forest Fire Spread Prediction: parameters Tuning for a Heterogeneous Configuration |
title_sort |
ess-im applied to forest fire spread prediction: parameters tuning for a heterogeneous configuration |
publishDate |
2023 |
url |
http://hdl.handle.net/20.500.12272/8036 |
work_keys_str_mv |
AT mendezgarabettimiguel essimappliedtoforestfirespreadpredictionparameterstuningforaheterogeneousconfiguration AT bianchinigerman essimappliedtoforestfirespreadpredictionparameterstuningforaheterogeneousconfiguration AT caymesscutaripaola essimappliedtoforestfirespreadpredictionparameterstuningforaheterogeneousconfiguration AT tardivom essimappliedtoforestfirespreadpredictionparameterstuningforaheterogeneousconfiguration |
_version_ |
1768720914169462784 |